alexa Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide | OMICS International | Abstract
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide

Udensi K Udensi1*, Alan J Tackett2, Stephanie Byrum2, Nathan L Avaritt2, Deepanwita Sengupta2, Linley W Moreland2, Paul B Tchounwou1 and Raphael D Isokpehi1,3

1RCMI Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, Jackson Mississippi 39217, USA

2Proteomics Facility, University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR 72205, USA

3Department of Biology, School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach FL 32114, USA

*Corresponding Author:
Udensi K Udensi
RCMI Center for Environmental Health, College of Science
Engineering and Technology, Jackson State University
Jackson Mississippi 39217, USA
Tel: +1-214-773-5598
E-mail: [email protected]

Received Date: May 08, 2014; Accepted Date: June 24, 2014; Published Date: June 28, 2014

Citation: Udensi UK, Tackett AJ, Byrum S, Avaritt NL, Sengupta D, et al. (2014) Proteomics-Based Identification of Differentially Abundant Proteins from Human Keratinocytes Exposed to Arsenic Trioxide. J Proteomics Bioinform 7: 166-178. doi: 10.4172/jpb.1000317

Copyright: © 2014 Udensi UK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited


Introduction: Arsenic is a widely distributed environmental toxicant that can cause multi-tissue pathologies. Proteomic assays allow for the identification of biological processes modulated by arsenic in diverse tissue types.

Method: The altered abundance of proteins from HaCaT human keratinocyte cell line exposed to arsenic was quantified using a label-free LC-MS/MS mass spectrometry workflow. Selected proteomics results were validated using western blot and RT-PCR. A functional annotation analytics strategy that included visual analytical integration of heterogeneous data sets was developed to elucidate functional categories. The annotations integrated were mainly tissue localization, biological process and gene family.

Result: The abundance of 173 proteins was altered in keratinocytes exposed to arsenic; in which 96 proteins had increased abundance while 77 proteins had decreased abundance. These proteins were also classified into 69 Gene Ontology biological process terms. The increased abundance of transferrin receptor protein (TFRC) was validated and also annotated to participate in response to hypoxia. A total of 33 proteins (11 increased abundance and 22 decreased abundance) were associated with 18 metabolic process terms. The Glutamate--cysteine ligase catalytic subunit (GCLC), the only protein annotated with the term sulfur amino acid metabolism process, had increased abundance while succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial precursor (SDHB), a tumor suppressor, had decreased abundance.

Conclusion: A list of 173 differentially abundant proteins in response to arsenic trioxide was grouped using three major functional annotations covering tissue localization, biological process and protein families. A possible explanation for hyperpigmentation pathologies observed in arsenic toxicity is that arsenic exposure leads to increased iron uptake in the normally hypoxic human skin. The proteins mapped to metabolic process terms and differentially abundant are candidates for evaluating metabolic pathways perturbed by arsenicals.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

bornova escort

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7