alexa Pruned Committee Neural Network Based on Accuracy and Diversity Trade-off for Permeability Prediction
ISSN: 2381-8719

Journal of Geology & Geophysics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Pruned Committee Neural Network Based on Accuracy and Diversity Trade-off for Permeability Prediction

Seyed Ali Jafari Kenari1* and Syamsiah Mashohor2
1Training Center of the National Iranian oil Company, Mahmoudabad, Mazandaran, Malaysia
2Department of Computer and Communication Systems Engineering, Faculty of Engineering, University of Putra, Malaysia
*Corresponding Author : Seyed Ali Jafari Kenari
Training Center of the National Iranian oil Company
Mahmoudabad, Mazandaran, Malaysia
Tel: 60 3-8946 6000
E-mail: [email protected]
Received January 07, 2014; Accepted February 10, 2014; Published February 14, 2014
Citation: Kenari SAJ, Mashohor S (2014) Pruned Committee Neural Network Based on Accuracy and Diversity Trade-off for Permeability Prediction. J Geol Geosci 3:144. doi:10.4172/2329-6755.1000144
Copyright: © 2014 Kenari SAJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Committee Machine (CM) or ensemble introduces a machine learning technique that aggregates some learners or experts to improve generalization performance compared to single member. The constructed CMs are sometimes unnecessarily large and have some drawbacks such as using extra memories, computational overhead, and occasional decrease in effectiveness. Pruning some members of this committee while preserving a high diversity among the individual experts is an efficient technique to increase the predictive performance. The diversity between committee members is a very important measurement parameter which is not necessarily independent of their accuracy and essentially there is a tradeoff between them. In this paper, first we constructed a committee neural network with different learning algorithms and then proposed an expert pruning method based on diversity and accuracy tradeoff to improve the committee machine framework. Finally we applied this proposed structure to predict permeability values from well log data with the aid of available core data. The results show that our method gives the lowest error and highest correlation coefficient compared to the best expert and the initial committee machine and also produces significant information on the reliability of the permeability predictions.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected].com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version