Awards Nomination 20+ Million Readerbase
Indexed In
  • Academic Journals Database
  • Genamics JournalSeek
  • Academic Keys
  • JournalTOCs
  • China National Knowledge Infrastructure (CNKI)
  • Scimago
  • Access to Global Online Research in Agriculture (AGORA)
  • Electronic Journals Library
  • RefSeek
  • Directory of Research Journal Indexing (DRJI)
  • Hamdard University
  • EBSCO A-Z
  • OCLC- WorldCat
  • SWB online catalog
  • Virtual Library of Biology (vifabio)
  • Publons
  • MIAR
  • University Grants Commission
  • Geneva Foundation for Medical Education and Research
  • Euro Pub
  • Google Scholar
Share This Page
Journal Flyer
Flyer image

Abstract

Soil Solarization and Inoculation with Sulphur Oxidizing Bacteria and Their Effects on Some Soil Properties

Hala H Gomah, Mahmoud SM, El-Rewainy HM and Abdrabou MR

Two greenhouse pot experiments (clayey and sandy soil) were conducted in order to evaluate the effects of solarization (covering the soil with transparent plastic sheets), inoculation with sulfur oxidizing bacteria SOB (isolated Thiobacillus), addition of filter mud cake FMC (one of the sugar industry wastes, Nagaa Hammady Sugar Factory, Egypt) as a source of organic matter and elemental sulfur on some sand and clay soil properties. In both soils, the temperature of solarized soil was always higher than the nonsolarized one with an average of 6°C at 8:00 a.m. and 14°C at 4:00 p.m. which resulted in a reduction in organic matter percentage (OM%). Both FMC and S addition had great effects on increasing soil total soluble salts compared to the increase that resulted from either solarization or SOB inoculation. The effect of elemental sulfur addition on decreasing soil pH was higher than the other treatments in clay soil, while FMC addition was the most effective treatment in sandy soil. The highest increase in available S was always found when soils were treated with elemental sulfur. Each of the treatments increased the available P in both soils; however the most effective treatment was FMC addition. Soluble Ca+2+Mg+2 and K+ were always increased due to each of the treatments. The highest increase in soluble Na+ was due to increasing soil temperature by solarization compared to the other treatments.