alexa Quantifying Uptake and Retention of Copper Ions in Silica-Encrusted Chlamydomonas reinhardtii
ISSN: 2161-1009

Biochemistry & Analytical Biochemistry
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Quantifying Uptake and Retention of Copper Ions in Silica-Encrusted Chlamydomonas reinhardtii

Xiaohui Li1, Shanying Gui2, Mohammed Bhuiyan2, Weiqiao Zeng2, Yagya Subedi2, Rong Wang1 and Liaohai Chen2*

1Department of Biological, Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA

2Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA

*Corresponding Author:
Dr. Liaohai Chen
Department of Chemistry and Biochemistry
Utah State University, Logan
UT, 84322, USA
Tel: (435) 797-8626
E-mail: [email protected]

Received Date: October 30, 2015; Accepted Date: November 26, 2015; Published Date: November 30, 2015

Citation: Li X, Gui S, Bhuiyan M, Zeng W, Subedi Y, et al. (2015) Quantifying Uptake and Retention of Copper Ions in Silica-Encrusted Chlamydomonas reinhardtii. Biochem Anal Biochem 4:228. doi:10.4172/2161-1009.1000228

Copyright: © 2015 Li X, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Using copper (II) ion as a model pollutant, we report a new bioremediation concept, which involves the use of green algae Chlamydomonas reinhardtii to efficiently collect copper ions from the solution, followed by encapsulating copper loaded algae with silica, thus reducing the bioavailability of copper ions in the solution. Specifically, the potential of Chlamydomonas reinhardtii as an active copper (II) absorbent was demonstrated by quantifying and characterizing the copper uptake rate, capacity, efficacy, as well as copper retention from C. reinhardtii. Subsequently, a method of encrusting copper loaded C. reinhardtii with silica was developed, taking the advantage that the presences of high abundant polysaccharides and glycoproteins on the cell walls, as well as the presence of (3-amino-propyl) trimethoxysilane (APS) can function as nucleation center for silicification process of tetramethyl orthosilicate (TMOS). Both fluorescence imaging and scanning electron microscope (SEM) imaging confirmed the silica encrustation. It is expected that silica encrustation of algae has the potential for in situ remediation of various contaminants in a wide range of environments while providing long-term stabilization and diminishing the bioavailability of the contaminants.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords