alexa Radiation-Induced Crosstalk between MicroRNAs and Prote
ISSN: 0974-276X

Journal of Proteomics & Bioinformatics
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Radiation-Induced Crosstalk between MicroRNAs and Proteins of the Endothelium: In silico Analysis

Arundhathi Sriharshan1, Anne Kraemer1, Michael J Atkinson1,2, Simone Moertl1 and Soile Tapio1*

1Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany

2Chair of Radiation Biology, Technical University Munich, Munich, Germany

*Corresponding Author:
Soile Tapio
Helmholtz Center Munich
German Research Center for Environmental Health
Institute of Radiation Biology, Neuherberg, Germany
Tel: +49 89 3187 3445
Fax: +49 89 3187 3378
E-mail: [email protected]

Received Date: August 12, 2014; Accepted Date: September 17, 2014; Published Date: September 22, 2014

Citation: Sriharshan A, Kraemer A, Atkinson MJ, Moertl S, Tapio S (2014) Radiation-Induced Crosstalk between MicroRNAs and Proteins of the Endothelium: In silico Analysis. J Proteomics Bioinform 7:327-331. doi: 10.4172/jpb.1000335

Copyright: © 2014 Sriharshan A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

 

Abstract

Ionising radiation causes damage at various levels in the exposed cell. The initial injury and the resulting cellular response to the damage involve complex crosstalk between the regulators of the DNA damage response recognition signalling and repair pathways. System-level research is required to gain more insight into these pathways. In this study we have used an in silico method to connect the altered proteome and miRNAome networks after radiation exposure by using Ingenuity Pathway Analysis tool and further verification for seed sequence matches by manually searching in microrna.org, mirDB, mirwalk, miRBase, and Targetscan databases. The endothelial cell was used as a model system as the endothelium is one of the main cellular systems damaged by ionising radiation. The interaction analysis revealed that changes at the miRNA level occur shortly after irradiation (4 and 12 hours) and thus often precede the alterations in the proteome that mostly take place later (24 hours). The two networks are closely intertwined emphasizing the regulatory role of miRNAs in the protein expression. Beside the well described pathways of the initial radiation response, such as oxidative stress and mitochondrial dysfunction, additional pathways such as Rho signalling (Rho family GTPases, Rho GDI and RhoA signalling) are involved in the endothelial response. In conclusion, the in silico analysis presented here is a valuable tool for identification of radiation targets and biomarkers for further validation. Furthermore, it can be used for any cellular or tissue model of interest.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords