alexa Regulated Gaseous Emissions from In-use High Horsepower
ISSN: 2375-4397

Journal of Pollution Effects & Control
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Regulated Gaseous Emissions from In-use High Horsepower Drilling and Hydraulic Fracturing Engines

Johnson DR*, Heltzel R, Nix AC, Clark N and Darzi M

West Virginia University, Mechanical and Aerospace Engineering Department, Center for Alternative Fuels, Engines, and Emissions, 263 Engineering Sciences Building, Morgantown, WV 26506, USA

*Corresponding Author:
Derek R Johnson
West Virginia University, Mechanical and Aerospace Engineering Department
Center for Alternative Fuels, Engines, and Emissions, 263 Engineering Sciences Building
Morgantown, WV 26506, USA
Tel: +3042166592/3042935725
E-mail: [email protected]

Received date: May 10, 2017; Accepted date: May 19, 2017; Published date: May 26, 2017

Citation: Johnson DR, Heltzel R, Nix AC, Clark N, Darzi M (2017) Regulated Gaseous Emissions from In-use High Horsepower Drilling and Hydraulic Fracturing Engines. J Pollut Eff Cont 5:187. doi: 10.4176/2375-4397.1000187

Copyright: © 2017 Johnson DR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Unconventional well development is an energy intensive process, which relies heavily on diesel fuel to power high-horsepower engines. To reduce emissions and fuel costs, and increase natural gas utilization, industry has employed a limited number of dual fuel compression-ignited and dedicated natural gas spark-ignited engines. However, little in-use data are available for conventional engines or these new technologies. We measured regulated gaseous emissions from engines servicing the unconventional natural gas well development industry to understand better their in-use characteristics such that insight into real world emissions factors could be developed for use by researchers, regulators, or industry. Data collection efforts were limited by low utilization of these new technologies, therefore these data may not be representative of the current distribution of engines either nationally or by shale play. Emissions and fuel consumption were collected from two drilling engines operating as Tier 2 diesel only and dual fuel, two drilling engines that were dedicated natural gas, and two hydraulic fracturing engines operated as diesel only and dual fuel. Emissions for diesel only operation were below Tier 2 certification standards for carbon monoxide and non-methane hydrocarbon plus oxides of nitrogen. Dual fuel engines require use of oxidation catalysts to reduce carbon monoxide and non-methane hydrocarbon emissions resulting from this mode of combustion. For dual fuel engines with diesel oxidation catalysts, carbon monoxide emissions were reduced below Tier 2 diesel only standards by an order of magnitude. Dual fuel operation showed varied effects on non-methane hydrocarbon plus oxides of nitrogen emissions depending on configuration. These variations were mainly driven by some technologies increasing or decreasing oxides of nitrogen emissions. One dual fuel drilling engine failed to meet Tier 2 standards, as it did not include a diesel oxidation catalyst. Of the two dedicated natural engines tested, one had a failed catalyst and did not meet off-road standards for spark-ignited engines; however, emissions from the engine with the properly functioning catalyst were well below standards. Dedicated natural gas engines also demonstrated potential to meet Tier 2 carbon monoxide regulations while producing significantly lower oxides of nitrogen emissions than diesel only or dual fuel engines.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords