alexa Regulation of Cell Signaling and Function by Endothelia
ISSN: 2161-1025

Translational Medicine
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Regulation of Cell Signaling and Function by Endothelial Caveolins: Implications in Disease

Grzegorz Sowa*

Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, 65212, USA

*Corresponding Author:
Dr. Grzegorz Sowa
University of Missouri
Department of Medical Pharmacology and Physiology 1 Hospital Drive
Rm. MA 415Columbia, MO 65212, USA
E-mail: [email protected]

Received Date: December 20, 2011; Accepted Date: January 02, 2012; Published Date: January 04, 2012

Citation: Sowa G (2012) Regulation of Cell Signaling and Function by Endothelial Caveolins: Implications in Disease. Translational Medic S8:001. doi:10.4172/2161-1025.S8-001

Copyright: © 2012 Sowa G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Caveolae are cholesterol- and glycosphingolipid-rich omega-shaped invaginations of the plasma membrane that are very abundant in vascular endothelial cells and present in most cell types. Caveolins are the major coat protein components of caveolae. Multiple studies using knockout mouse, small interfering RNA, and cell-permeable peptide delivery approaches have significantly enhanced our understanding of the role of endothelial caveolae and caveolin-1 in physiology and disease. Several postnatal pulmonary and cardiovascular pathologies have been reported in caveolin-1 knockout mice, many of which have been recently rescued by selective re-expression of caveolin-1 in endothelium of these mice. A large body of experimental evidence mostly using caveolin-1 knockout mice suggests that, depending on the disease model, endothelial caveolin-1 may play either a protective or a detrimental role. For instance, physiological or higher expression levels of caveolin-1 in endothelium might be beneficial in such diseases as pulmonary hypertension, cardiac hypertrophy, or ischemic injury. On the other hand, endothelial caveolin-1 might contribute to acute lung injury and inflammation, atherosclerosis or pathological angiogenesis associated with inflammatory bowel disease. Moreover, depending on the specific model, endothelial caveolin-1 may either promote or suppress tumor-induced angiogenesis. In addition to overwhelming evidence for the role of endothelial caveolin-1, more recent studies also suggest that endothelial caveolin-2 could possibly play a role in pulmonary disease. The purpose of this review is to focus on how caveolin-1 expressed in endothelial cells regulates endothelial cell signaling and function. The review places particular emphasis on relevance to disease, including but not limited to Pulmonary and cardiovascular disorders as well as cancer. In addition to caveolin-1, possible importance of the less-studied endothelial caveolin-2 in pulmonary diseases will be also discussed.

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords