Reach Us +44-1647-403003
Relation Between Tumor Size and Range of Motion in IMRT Treatment Planning for Thoracic Lesions | OMICS International | Abstract
ISSN: 1948-5956

Journal of Cancer Science & Therapy
Open Access

Like us on:

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Relation Between Tumor Size and Range of Motion in IMRT Treatment Planning for Thoracic Lesions

Ivaylo B. Mihaylov1,2*, Fritz A. Lerma3 , and Eduardo G. Moros2

1Department of Radiation Oncology, Rhode Island Hospital/ Warren Alpert Medical School of Brown University, 593 Eddy St., Providence, RI 02903

2Department of Radiation Oncology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205

3Department of Radiation Oncology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore , MD 21201

*Corresponding Author:
Dr. Ivaylo B. Mihaylov, PhD,
Department of Radiation Oncology Rhode Island Hospital/Brown Medical Center 593 Eddy St., Providence, RI 02903,
Tel: (401) 444-8546,
Fax: (401) 444-2149,
E-mail: [email protected]

Received Date: May 04, 2010; Accepted Date: June 08, 2010; Published Date: June 08, 2010

Citation: Mihaylov IB, Lerma FA, Moros EG (2010) Relation Between Tumor Size and Range of Motion in IMRT Treatment Planning for Thoracic Lesions. J Cancer Sci Ther 2: 095-099. doi:10.4172/1948-5956.1000031

Copyright: © 2010 Mihaylov IB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Purpose: To evaluate the relation between tumor size/volume, tumor range of motion, and healthy lung volume in light of radiotherapy motion management paradigm. Materials and Methods: Four patient data sets were considered in this investigation. Each patient underwent time resolved (4D) CT data scan. Mid-ventilation CT data sets, with nominal lung volumes ranging from ~3000 cm3 to ~6000 cm3, were considered for treatment planning. Spheres with pre-specified radii were auto-contoured in the left lower lobes as simulated planning target volumes (PTVs) for each patient. Motion in superior-inferior direction was superimposed on the simulated spherical PTVs, such that motion-inclusive ITVs were generated. Nine-field IMRT treatment plans were created for all lung volumes, different combinations of simulated PTV spherical size and ranges of motion. Three dose levels of 60 Gy, 70 Gy, and 80 Gy were utilized. The doses were prescribed to 95% of the ITV. Simulated PTV sizes and ranges of motion were varied until prescriptions were met, given that organs at risk (OARs) were spared. The OAR constraints were: 40 Gy to 1% of the cord and 30% of the heart, as well as 20 Gy and 30 Gy to 30% and 20% of benign lung, respectively. These constraints, representative for 2 Gy per fraction fractionation schemes, are commonly used clinically. The treatment plans were deemed clinically acceptable when standard deviation of the dose across the ITV was less than 3% of the prescription dose in addition to fulfillment of the OAR constraints. Results: For each nominal lung volume three look-up curves, corresponding to the prescription dose levels were generated. The plots related the PTV sphere sizes with its range of motion. In addition, correlation between the absolute tumor volume and its range of motion was also established and presented in graphical format. Conclusions: The motion management threshold of 0.5 cm found in the literature is reasonable. However, in some cases, depending on the tumor size, tumor range of motion, and nominal lung volumes, it might be too restrictive. In the determination of the most appropriate individualized treatment planning approach all factors such as tumor and lung volumes, tumor range of motion and patient tolerance toward the treatment technique need to be assessed.