alexa Relationship between Hip Flexion Contracture and Hip-Joint Contact Force in Standing Posture: A Computer Simulation Study | OMICS International | Abstract
ISSN-2165-7556

Journal of Ergonomics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Relationship between Hip Flexion Contracture and Hip-Joint Contact Force in Standing Posture: A Computer Simulation Study

Takuma Inai*, Mutsuaki Edama, Tomoya Takabayashi and Masayoshi Kubo

Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata 950-3198, Japan

*Corresponding Author:
Takuma Inai
Institute for Human Movement and Medical Sciences
Niigata University of Health and Welfare
1398 Shimami-cho, Kita-ku
Niigata City, Niigata 950-3198, Japan
Tel: +81 25-257-4723
Fax: +81 25-257-4723
E-mail: [email protected]

Received Date: April 03, 2017; Accepted Date: April 13, 2017; Published Date: April 20, 2017

Citation: Inai T, Edama M, Takabayashi T, Kubo M (2017) Relationship between Hip Flexion Contracture and Hip-Joint Contact Force in Standing Posture: A Computer Simulation Study. J Ergonomics 7:194. doi: 10.4172/2165-7556.1000194

Copyright: © 2017 Inai T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Mechanical stress on articular cartilage and long-duration standing postures are risk factors for hip osteoarthritis progression. This study aims to examine the relationship between hip flexion contracture and the hip-joint contact force in standing postures using computer simulation. A musculoskeletal model composed of seven segments (Head, Arms, and Trunk (HAT) and thighs, shanks, and two feet) was created. Various standing postures (708 variations) were generated, and five hip flexion contracture conditions were set: zero contracture and flexions of 0°, 10°, 20°, and 30°. A standing posture satisfying the hip flexion contracture condition with the minimum sum of the muscle activations was obtained as the optimal standing posture, and the hip-joint contact force in the optimal standing posture was calculated. A sensitivity analysis was conducted by varying four parameters (the objective function, physiological cross-sectional area, force-length relation, and muscle moment arm length). The hip-joint contact force and hip extensor muscle forces (i.e., those of the gluteus maximus, semitendinosus, semimembranosus, and biceps femoris long head) during standing increased with the development of hip flexion contracture. The hip-joint contact force for the standing posture with a 30° hip flexion contracture was almost twice that for the no-contracture condition (8.7 and 3.7 N/kg, respectively). The sensitivity analysis showed that variation of the four parameters did not affect our main finding. The main finding of this study is that hip-joint contact force during standing increases with the development of hip flexion contracture. The findings of this study may help to prevent hip osteoarthritis progression.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version