alexa Remote Ischemic Preconditioning Cardio-protection via Enhanced Cell Volume Regulation Requires Activation of Swelling-Activated Chloride (Icl- Swell) Channels | Abstract
ISSN: 2329-6607

Cardiovascular Pharmacology: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Remote Ischemic Preconditioning Cardio-protection via Enhanced Cell Volume Regulation Requires Activation of Swelling-Activated Chloride (Icl- Swell) Channels

Gregory J Wilson1-3*, Krista M Hawrylyshyn1, Silvia Cioci1, Sheena Guglani1 and Roberto J Diaz1,2

1Division of Physiology and Experimental Medicine, Research Institute Toronto, Canada

2Department of Pediatric Laboratory Medicine and Pathology, the Hospital for Sick Children, Toronto, Canada

3Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada

*Corresponding Author:
Gregory J Wilson
Division of Physiology and Experimental Medicine The Hospital for Sick Children
Toronto, Ontario, Canada
Tel: (416)-813-5965
Fax: (416)-813-7480
E-mail: [email protected]

Received date: March 31, 2014; Accepted date: May 03, 2014; Published date: May 11, 2014

Citation: Wilson GJ, Hawrylyshyn KM, Cioci S, Guglani S, Diaz RJ (2014) Remote Ischemic Preconditioning Cardio-protection via Enhanced Cell Volume Regulation Requires Activation of Swelling-Activated Chloride (Icl-Swell) Channels. Cardiol Pharmacol 3:117. doi:10.4172/2329-6607.1000117

Copyright: © 2014 Wilson GJ, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Introduction: We have previously shown that remote ischemic preconditioning induced in cardiomyocytes by a brief direct incubation in rabbit blood dialysate, originated from other rabbits initially subjected to brief periods of limb ischemia/ reperfusion, given prior exposure to a prolonged ischemia/reperfusion protects cardiomyocytes against necrosis. In this study, we examined the hypothesis that sarcolemmal protein kinase C epsilon interacts with the swellingactivated Cl- channel to both enhance cardiomyocyte volume regulation and protect against cardiomyocyte necrosis in limb ischemia/reperfusion remote ischemic preconditioning.

Methods: Cultured (forty-eight hours) rabbit cardiomyocytes (control and remote ischemic preconditioned dialysate treated) were, after stabilization, subjected to either thirty-minute hypo-osmotic stress or to seventy-five minutes of simulated ischemia (severe hypoxia plus metabolic inhibition) followed by sixty minutes of simulated reperfusion (in oxygenated media), with or without a specific swelling-activated chloride channel inhibitor or its vehicle given ten minutes prior and during the hypo-osmotic stress or the simulate ischemia, to measure peak cell swelling (between eight to twelve minutes of hypo-osmotic stress), regulatory volume decrease and cell necrosis (by trypan blue staining).

Results: Specific inhibition of swell-activated chloride channels not only substantially inhibited remote ischemic preconditioned dialysate induced protection against cardiomyocyte necrosis but it also significantly impaired cardiomyocyte volume regulation. PKCε was found to co-immunoprecipitate with ClC-3, consistent with this kinase influencing swell-activated chloride channel activity.

Conclusion: These findings indicate that swelling-activated chloride channels are essential for the cardioprotection by remote ischemic preconditioning.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7