alexa Reprogramming Cancer Cell In Vivo | OMICS International
ISSN: 2157-7633

Journal of Stem Cell Research & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Reprogramming Cancer Cell In Vivo

Brian W. Booth1*, Sonia M Rosenfield2 and Gilbert H Smith2

1Institute for Biological Interfaces of Engineering, Clemson University, USA

2Mammary Stem Cell Biology Section (BRL), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

*Corresponding Author:
Brian W Booth, Ph.D
Institute for Biological Interfaces of Engineering
Clemson University
401-1 Rhodes Engineering Research Center, Clemson, SC 29634 USA
Tel: 864-656-4693
Fax: 864-656-4466
E-mail: [email protected]

Received date: April 29, 2014; Accepted date: June 09, 2014; Published date: June 11, 2014

Citation: Booth BW, Rosenfield SM, Smith GH (2014) Reprogramming Cancer Cells In Vivo. J Stem Cell Res Ther 4:211. doi:10.4172/2157-7633.1000211

Copyright: © 2014 Booth BW, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Tissue microenvironments have tremendous influence on both local cells and the surrounding tissues. Signals originating from the local microenvironment, both chemical and physical, help to regulate cell and tissue functions including proliferation, differentiation, wound healing, and tumorigenesis. Tumorigenesis is often defined as the result of multiple mutations that provide a growth advantage and lead to clonal expansion of a mutated population. Evidence is accumulating that demonstrates that local microenvironment impacts the behavior of cancer cells by favoring or inhibiting tumor progression. This review will discuss studies that demonstrate the potential of the mouse mammary microenvironment to reprogram tumor-derived cells into cells that contribute to the formation of a functional, tumorfree, mammary outgrowth. Mouse and human tumor cells, derived from different species and tumor types, are incorporated into regenerating mammary structures and differentiate in luminal, myoepithelial, and milk producing secretory cells when incorporated into a competent mammary niche. These findings demonstrate that human or mouse cancers independent of their origin or differentiation state retain a subpopulation of cells with stem/progenitor activity that respond to the signals of a normal microenvironment and contribute their progeny to normal development, which suppresses their malignant phenotype. During this process, the normal mouse mammary cells are able to supply paracrine signals necessary for normal mammary gland development such as steroid receptor signals that the human and mouse cancer cells cannot.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version