alexa Rest as a New Transcription Factor to Control Neural Crest Development
ISSN: 2168-9431

Single Cell Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)


Rest as a New Transcription Factor to Control Neural Crest Development

Hitomi Aoki and Takahiro Kunisada*

Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, Japan

*Corresponding Author:
Takahiro Kunisada
Department of Tissue and Organ Development
Regeneration and Advanced Medical Science
Gifu University Graduate School of Medicine
1-1 Yanagido, Gifu 501-1194, Japan
Tel: +81-58-230-6477
Fax: +81-58-230-6478

Received date: Jun 08, 2016; Accepted date: Jun 21, 2016; Published date: June 23, 2016

Citation: Aoki H, Kunisada T (2016) Rest as a New Transcription Factor to Control Neural Crest Development. Single Cell Biol 5: 144. doi: 10.4172/2168-9431.1000144

Copyright: © 2016 Aoki H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



RE1-silencing transcription factor (Rest), also known as NRSF (neuro-restrictive silencer factor), is a negative regulator of neuron-specific genes and expressed during embryonic development to prevent neural gene expression in non-neuronal cells. However, Rest null mice die by E11.5, prior to which the growth retardation caused by widespread apoptotic cell death has precluded further analyses of the potential role of Rest in vivo. In order to investigate the function of Rest in neural crest cells (NCCs) which are known to differentiate into neuronal and nonneuronal lineages, we established NCC-specific homozygous Rest conditional knockout (CKO) mice and observed their neonatal death caused by the defect of enteric nerve cells derived from NCCs. The viable heterozygous NCCspecific Rest CKO mice showed the white spotting phenotype, associated with a reduction in the number of melanoblasts, a non-neuronal derivative of NCCs, in embryonic skin. These results suggest the expression of REST during the early NCC specification stage is necessary for the proper development of NCCs. To fully understand the mechanisms of white spot formation and postnatal death or embryonic lethality mediated by the Rest ablation, future experiments should focus on single cell analysis to characterize the detailed cellular events such as reduced cell cycle, apoptosis, change of the cell fate to well explain the observed phenotypic changes.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version