alexa RHD Zygosity Determination from Whole Genome Sequencing
ISSN: 2155-9864

Journal of Blood Disorders & Transfusion
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

RHD Zygosity Determination from Whole Genome Sequencing Data

John Baronas1, Connie M Westhoff2, Sunitha Vege2, Helen Mah1, Maria Aguad1, Robin Smeland-Wagman1, Richard M Kaufman3,6, Heidi L Rehm1,3,4,5, Leslie E Silberstein6, Robert C Green3,5,7 and William J Lane1,3*

1Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA

2New York Blood Center, New York, USA

3Harvard Medical School, Boston, MA, USA

4Laboratory for Molecular Medicine, Partners Healthcare Personalized Medicine, Boston, MA, USA

5Partners Healthcare Personalized Medicine, Boston, MA, USA

6Department of Pathology, Division of Transfusion Medicine, Brigham and Women’s Hospital, Boston, MA, USA

7Department of Medicine, Division of Genetics, Brigham and Women’s Hospital, Boston, MA, USA

*Corresponding Author:
William J Lane
Department of Pathology
Brigham and Women’s Hospital and Harvard Medical School
Amory Lab Building 3rd Floor, Rm 3-117
75 Francis Street, Boston, MA 02115, USA
Tel: 617-732-5469
Email: [email protected]

Received date: July 27, 2016; Accepted date: September 15, 2016; Published date: September 19, 2016

Citation: Baronas J, Westhoff CM, Vege S, Mah H, Aguad M, et al. (2016) RHD Zygosity Determination from Whole Genome Sequencing Data. J Blood Disord Transfus 7:365. doi:10.4172/2155-9864.1000365

Copyright: © 2016 Baronas J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

In the Rh blood group system, the RHD gene is bordered by two homologous DNA sequences called the upstream and downstream Rhesus boxes. The most common cause of the D− phenotype in people of European descent is a deletion of the RHD gene region, which results in a hybrid combination of the two Rhesus boxes. PCRbased testing can detect the presence or absence of the hybrid box to determine RHD zygosity. PCR hybrid box testing on fathers can stratify risk for haemolytic disease of the fetus and new born in mothers with anti-D antibodies. Red blood cells and genomic DNA were isolated from 37 individuals of European descent undergoing whole genome sequencing as part of the MedSeq Project. A whole genome sequence-based RHD sequence read depth analysis was used to determine RHD zygosity (homozygous, hemizygous, or null states) with 100% agreement (n=37) when compared to conventional RhD serology and PCR-based hybrid box assay.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords