alexa Rheological Model of Force Transmission through the Helmet and Concussion Sensitivity
ISSN: 2376-0281

International Journal of Neurorehabilitation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Rheological Model of Force Transmission through the Helmet and Concussion Sensitivity

Isiah Kendall, Anthony Vicini* and Tarun Goswami

Biomedical, Industrial and Human Factors Engineering, Wright State University, Dayton, OH, USA

Corresponding Author:
Anthony Vicini
Biomedical, Industrial and Human Factors Engineering
Wright State University, 2070 Zink Rd Apt 3C, Fairborn
Dayton, OH, USA 45435
Tel: 636 448 9404
Fax: 937 775 5009
E-mail: [email protected]

Received September 25, 2014; Accepted November 25, 2014; Published December 03, 2014

Citation: Kendall I, Vicini A, Goswami T (2014) Rheological Model of Force Transmission through the Helmet and Concussion Sensitivity. Int J Neurorehabilitation 1:132. doi:10.4172/2376-0281.1000132

Copyright: © 2014 Kendall I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In contact sports, head-to-head collisions can lead to concussions, which pose serious health risks to players. This research aims to understand the force transfer from the helmet to the brain that causes concussions in collisions using a rheological model. Experimental data was gathered from players in the National Football League and testing of one type of helmet and padding. The rheological model was verified with published data and good correlation was achieved. Further sensitivity analysis of concussion risk was performed with respect to force, body weight, mass, and impact duration fit to normal and Weibull distributions using Monte Carlo simulations of impacts. A 50% threshold for moderate concussion was found based on these physiological variables. Average weight and velocity values for an NFL player in a collision gave a 50% concussion risk to a helmet to helmet impact that has a deceleration over 6.365 ms or less. Analysis of children ranging from 10 to 15 years of age was also conducted with the assumption of identical equipment to NFL players due a dearth of other research into the properties of equipment used by children. As the equipment is assumed to decrease in quality over time, this established an upper bound to the tolerance values for children. For a 50th percentile weight 10 year old male or female child, this gives thresholds of 2.483 or 2.573 ms respectively.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords