Dersleri yüzünden oldukça stresli bir ruh haline sikiş hikayeleri bürünüp özel matematik dersinden önce rahatlayabilmek için amatör pornolar kendisini yatak odasına kapatan genç adam telefonundan porno resimleri açtığı porno filmini keyifle seyir ederek yatağını mobil porno okşar ruh dinlendirici olduğunu iddia ettikleri özel sex resim bir masaj salonunda çalışan genç masör hem sağlık hem de huzur sikiş için gelip masaj yaptıracak olan kadını gördüğünde porn nutku tutulur tüm gün boyu seksi lezbiyenleri sikiş dikizleyerek onları en savunmasız anlarında fotoğraflayan azılı erkek lavaboya geçerek fotoğraflara bakıp koca yarağını keyifle okşamaya başlar

GET THE APP

Self Sustained Renewable Energy Generator | OMICS International| Abstract
ISSN: 2576-1463

Innovative Energy & Research
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)
  • Review Article   
  • Innov Ener Res 2018, Vol 7(1): 184
  • DOI: 10.4172/2576-1463.1000184

Self Sustained Renewable Energy Generator

Alex Thomas*
Department of Automation, EEA Consultants FZC, , United Arab Emirates
*Corresponding Author : Alex Thomas, Department of Automation, EEA Consultants FZC, United Arab Emirates, Tel: 971504568132; 918281370017, Email: alex.thomas@eeac-me.com

Received Date: Jan 24, 2018 / Accepted Date: Feb 05, 2018 / Published Date: Feb 10, 2018

Abstract

Describes a method for self sustained generation of renewable energy by use of a piezo electric crystal actuator. Piezo electric crystal generates rather minute amounts of energy when deformed by force. The usable energy obtained by such actuation varies based on crystal size, applied force, but for an average size and for moderate applied force, could be about 90 micro joules. In order to collect reasonable energy for practically viable application, tens of millions of such actuation needs to be performed each second on a continuous basis.

Safely assuming only about 60 micro-joules energy for power output calculations, about ten million actuation per second will produce 600 joules of energy per second. The actuator consumes power, and achieves selfsustenance when the electrical energy produced by the actuator exceeds its own consumption requirements. As per calculations shown in detail section, it exceeds this threshold comfortably at twenty million actuations per second. The actuator is theoretically shown to be capable of over hundred million actuations per second, making available about 5K watts of excess energy for export, For a ten-fold power output increase, it can be safely observed that the actuator drive input energy demand increase is limited to less than threefold. Unlike most other forms of energy generation, where input energy is the motive energy, and the maximum output cannot exceed input energy minus all losses, here the input energy serves to subject the crystals to the motive force, and therefore does not share the same input-output relationship, and therefore makes possible its self-sustenance, a concept considered impossible in reality. As this is against the present accepted norms of science, the model and calculations are published, for a broader expert review and assessment to identify its viability.

Keywords: Renewable energy; Piezoelectric crystal actuator

Citation: Thomas A (2018) Self Sustained Renewable Energy Generator. Innov Ener Res 7: 184. Doi: 10.4172/2576-1463.1000184

Copyright: © 2018 Thomas A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Top