Reach Us +44-1522-440391
Simulation of Kerr Lens Modelocking Behavior in Sagittal Plane | OMICS International | Abstract
ISSN: 2469-410X

Journal of Lasers, Optics & Photonics
Open Access

Our Group organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Simulation of Kerr Lens Modelocking Behavior in Sagittal Plane

Kamjoo MJ*

Basic science Department, Physics group, Imam Hossein University, Tehran, Iran

*Corresponding Author:
Kamjoo MJ
Basic science Department, Physics group
Imam Hossein University, Tehran, Iran
Tel: +98 21 7281 8142
E-mail: [email protected]

Received Date: October 07, 2016; Accepted Date: December 27, 2016; Published Date: January 10, 2017

Citation: Kamjoo MJ (2017) Simulation of Kerr Lens Modelocking Behavior in Sagittal Plane. J Laser Opt Photonics 4: 146. doi: 10.4172/2469-410X.1000146

Copyright: © 2017 Kamjoo MJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Femtosecond oscillator is first step to generate femtosecond laser pulse. Simulation of the laser beam behavior in the oscillator cavity, especially in the gain medium is essential to realize and optimize the oscillator output pulse characteristics. In this work, at first we simulate the laser beam propagation in a folded cavity with curved mirrors in symmetric and asymmetric designs using the ABCD ray tracing technique for a Gaussian beam shape to achieve influence of Kerr lens modelocking in sagittal plane. We use split-step method to obtain the beam intensity changes in the ti:sa rod and shooting method to calculate the beam spot size on the first cavity mirror. In following the influence of the gain medium position changes on the size and position of the beam waist and also on the misalignment sensitivity parameter for the sagittal plane is simulated. Furthermore the misalignment sensitivity parameter and the size and position of the beam waist are not identical for the beams in the sagittal plane, therefore to actualize an optimum design it is necessary to simulate the beam propagation in plane which is not usually considered in early design because of complication of the simulation.