alexa Single-Nuclear DNA Instability Analyses by Means of Single-Cell Pulsed- Field Gel Electrophoresis - Technical Problems of the Comet Assay and Their Solutions for Quantitative Measurements
ISSN-2155-9929

Journal of Molecular Biomarkers & Diagnosis
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Single-Nuclear DNA Instability Analyses by Means of Single-Cell Pulsed- Field Gel Electrophoresis - Technical Problems of the Comet Assay and Their Solutions for Quantitative Measurements

Satoru Kaneko1*, Joji Yoshida1, Hiromichi Ishikawa2 and Kiyoshi Takamatsu1

1Reproduction Center, Gynecology, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, Japan

2Reproduction Center, Urology, Ichikawa General Hospital, Tokyo Dental College, 5-11-13 Sugano, Ichikawa, Chiba, Japan

*Corresponding Author:
Satoru Kaneko
Reproduction Center, Gynecology
Ichikawa General Hospital, Tokyo Dental College
5-11-13 Sugano, Ichikawa, Chibac 272-8513, Japan
E-mail: [email protected]

Received date: March 26, 2013; Accepted date: June 17, 2013; Published date: June 19, 2013

Citation: Kaneko S, Yoshida J, Ishikawa H, Takamatsu K (2013) Single-Nuclear DNA Instability Analyses by Means of Single-Cell Pulsed-Field Gel Electrophoresis - Technical Problems of the Comet Assay and Their Solutions for Quantitative Measurements. J Mol Biomark Diagn S5:005. doi: 10.4172/2155-9929.S5-005

Copyright: © 2013 Kaneko S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

Throughout the past decade, the neutral and alkaline comet assays, which lyses cells with high salt in the
absence of proteolysis, have been the most widely used methods to observe single- or double-strand breaks (SSB,
DSB) in a single nucleus. These methods evaluate the degree of DNA damage based on the amount of granular
fragments discharged from the origin, the so-called “comet tail,” but not of long chain DNA fibers. Meanwhile, a novel,
single-cell pulsed-field gel electrophoresis (SCPFGE) method, which digested cells with trypsin, observed a different
course of DNA fragmentation: first, a few large fibrous fragments were derived from a bundle of long chain fibers,
then the cleavages were advanced until finally almost all the DNA was shredded to granular fragments. Some nuclear
DNA binding components were tolerant for high salt and high alkalinity, but were degraded by trypsin digestion. A
lack of trypsin digestion causes false negative results in both SCPFGE and comet assays. Also, most DNA fibers
were still fixed with components, and the comet tail did not reflect a total amount of granular fragments, but rather
those that released components. Repair of DSB is intrinsically difficult as compared to other DNA lesions, and the
critical threshold is extremely low.DNA fibers that have already been shredded to numerous granular fragments may
be irreparable as a result.
Although 100 - 300 mmol/L NaOH was commonly used in the alkaline comet assay, the naked DNA fibers
persisted in 10 mmol/L NaOH after trypsin digestion, but were shredded to granular fragments by 30 mmol/L. Neogenesis
of the granular fragments by high pH did not clarify the mechanism of such a result; that is, it was unknown
whether it was due to dissociation of hydrogen bonds, strand breaks through alkaline labile sites, artifactual DSB,
or a combination of actions. Optimum conditions for the comet assay need to be defined to achieve quantitative
measurements.
DNA instability analyses by means SCPFGE is likely to serve as a fundamental step in single-cell genomics
to determine the competence of the cell population provided for DNA amplification methods and is likely to play an
important role in ensuring the safety of clinical regenerative medicine.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

nursinghealt[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords