alexa Site-Dependence Scalp Cooling System to Prevent Hair Lo
ISSN: 2155-9538

Journal of Bioengineering & Biomedical Science
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Site-Dependence Scalp Cooling System to Prevent Hair Loss during Chemotherapy

Sheikholeslami M1*, Ghaffari M2, Khorasani AF1 and Zoghi M3

1Department of Mechanical Engineering, Yazd University, Yazd, IRAN

2Department of Bioengineering, University of Illinois at Chicago, Chicago, IL

3Department of Mechanical Engineering, Farmingdale State College, SUNY, New York, US

*Corresponding Author:
Sheikholeslami M
Department of Mechanical
Engineering Yazd University
Yazd, IRAN
Tel: +98 913 856 5019
E-mail: [email protected]

Received Date: May 01, 2015 Accepted Date: June 30, 2015 Published Date: July 16, 2015

Citation: Sheikholeslami M, Ghaffari M, Khorasani AF, Zoghi M (2015) Site-Dependence Scalp Cooling System to Prevent Hair Loss during Chemotherapy. J Bioengineer & Biomedical Sci 5:158. doi:10.4172/2155-9538.1000158

Copyright: © 2015 Sheikholeslami M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Hair loss (Alopecia) is regarded as the most distressing side effects of chemotherapy in cancer patients. A reduction in cutaneous cell metabolism as a response to the hypothermia could simply make hair follicles less susceptible to drug damage with subdural cooling. In this study, a detailed three-dimensional finite element of human head model is used to investigate the changes in cutaneous blood flow due to heat transfer during the cooling process. Our finite element model consists of scalp, skull (trabecular and cortical bones), all meningeal layers, flax, tentorium, and the brain. Cooling effect was investigated in three different regions of frontal, superior and occipital of the head. The results showed that frontal region is the most sensitive region during cooling, because of the highest contact area between the scalp and the coolant. In order to keep the normal brain condition, the coolant temperature must not be lower than 2°C. It’s also recommended to keep the coolant temperature in range of -5°C to 7°C. With the constant coolant temperature, the results showed different steady state temperatures in different anatomical regions. It is therefore expected to design a new scalp cooling cap to provide site-dependence temperature with respect to different head regions for optimum heat transfer.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords