alexa Solvent Dewaxing of Heavy Crude Oil with Methyl Ethyl Ketone
ISSN:2157-7463

Journal of Petroleum & Environmental Biotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Solvent Dewaxing of Heavy Crude Oil with Methyl Ethyl Ketone

As’ad AM, Yeneneh AM and Obanijesu EO*
Department of Chemical Engineering, Curtin University, Bentley Campus, Perth, W.A. 6102, Australia
Corresponding Author : Obanijesu EO
Department of Chemical Engineering
Curtin University, Bentley Campus
Perth, W.A. 6102, Australia
Tel: +61414512670
E-mail: [email protected]
Received February 18, 2015; Accepted March 19, 2015; Published March 26, 2015
Citation: As’ad AM, Yeneneh AM, Obanijesu EO (2015) Solvent Dewaxing of Heavy Crude Oil with Methyl Ethyl Ketone. J Pet Environ Biotechnol 6:213. doi:10.4172/2157-7463.1000213
Copyright: © 2015 As’ad AM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Transportation of waxy crude oil along horizontal pipeline usually requires extra energy that costs additional billions of dollars to the industry. This study investigated the feasibility of Methyl Ethyl Ketone (MEK) as a selective solvent to dewax an Australian heavy crude oil and the possible optimum conditions. Experiments were conducted on three solvent to crude oil ratios (10 : 1, 15 : 1 and 20 : 1), three mixing temperatures (40°C, 50°C, and 60°C) and three cooling temperatures (-10°C, -15°C and -20°C). Each crude oil sample was weighed out and mixed with MEK at a predetermined mass ratio; the mixture was then heated in a hot water bath and stirred until a thermal equilibrium was achieved. The mixture was then placed in an ethylene glycol bath which had been cooled to the desired temperature using dry ice until the target temperature was achieved. The crystallised wax which forms in the mixture was then vacuum filtered, dried, and weighed. Three samples were prepared for each unique parametric variation, and the average result recorded. The results indicated that MEK dewaxing performance improved at higher mixing temperatures. This could be explained by the disruption of dispersion forces which exist between the molecules in the crude oil, allowing new intermolecular bonds to form between MEK and oil molecules in greater preference than with the wax molecules. It was also discovered that the use of a higher solvent to oil ratio resulted in a greater wax yield that is attributed to a greater oil solubility, considering MEK’s greater affinity for oil than wax, as well as a greater number of unbounded MEK molecules for dispersion forces to form when a high solvent to oil ratio is used. In contrast, it was found that a lower cooling temperature resulted in a greater extraction of wax from the mixture. This can be associated with the fact that the decrease in temperature encourages the crystallisation of the wax, as well as providing the system with a preferential condition in which an exothermic process, such as the formation of solute to solvent interactions to take place. Finally, the greatest wax yield (27.9 wt%) was achieved at a solvent to oil ratio of 15:01, a mixing temperature of 50°C and a cooling temperature of -20°C. Similar results of approximately 27.6 wt% wax yield was obtained at a cooling temperature of -15°C, which leads us to consider whether the additional energy required to achieve a lower cooling temperature is worth the increased revenue which may be obtained at the marginally greater wax yield when considering a large scale solvent dewaxing application.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords