alexa Solving Systems of Nonlinear Equations Using A Globally Convergent Optimization Algorithm | OMICS International | Abstract
ISSN: 2229-8711

Global Journal of Technology and Optimization
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Solving Systems of Nonlinear Equations Using A Globally Convergent Optimization Algorithm

Sona Taheri*, Musa Mammadov

Centre for Informatics and Applied Optimization, School of Science, Information Technology and Engineering, University of Ballarat, Victoria, Australia

*Corresponding Author:
Sona Taheri
Centre for Informatics and Applied Optimization
School of Science, Information Technology and Engineering
University of Ballarat, Victoria, Australia
E-mail: [email protected], [email protected]

Received date: February 2010, Revised date: September 2011, Accepted date: May 2012

Abstract

Solving systems of nonlinear equations is a relatively complicated problem for which a number of different approaches have been presented. In this paper, a new algorithm is proposed for the solutions of systems of nonlinear equations. This algorithm uses a combination of the gradient and the Newton’s methods. A novel dynamic combinatory is developed to determine the contribution of the methods in the combination. Also, by using some parameters in the proposed algorithm, this contribution is adjusted. We use the gradient method due to its global convergence property, and the Newton’s method to speed up the convergence rate. We consider two different combinations. In the first one, a step length is determined only along the gradient direction. The second one is finding a step length along both the gradient and the Newton’s directions. The performance of the proposed algorithm in comparison to the Newton’s method, the gradient method and an existing combination method is explored on several well known test problems in solving systems of nonlinear equations. The numerical results provide evidence that the proposed combination algorithm is generally more robust and efficient than other mentioned methods on some important and difficult problems.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7