alexa Speciation Genomics of Protein-Coding Genes Common to Mycoplasmatales | OMICS International | Abstract
ISSN: 2329-9002

Journal of Phylogenetics & Evolutionary Biology
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Speciation Genomics of Protein-Coding Genes Common to Mycoplasmatales

Dipaloke Mukherjee1* and Walter J Diehl2

1Department of Food Science, Nutrition and Health Promotion, Mississippi State University, MS 39762, USA

2Department of Biological Sciences, Mississippi State University, MS 39762, USA

*Corresponding Author:
Dipaloke Mukherjee
Department of Food Science
Nutrition and Health Promotion
Mississippi State University, MS 39762, USA
Tel: +1-662-341-2848
Fax: +1-662-325-8728
E-mail: [email protected]

Received Date: December 22, 2016; Accepted Date: January 09, 2017; Published Date: January 13, 2017

Citation: Mukherjee D, Diehl WJ (2017) Speciation Genomics of Protein-Coding Genes Common to Mycoplasmatales. J Phylogenetics Evol Biol 5:175. doi: 10.4172/2329-9002.1000175

Copyright: © 2017 Mukherjee D, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Identifying regions of a genome that evolve by natural selection, particularly as species diverge, has been a matter of considerable interest. The genomes of 12 species in the eubacterial order Mycoplasmatales were compared to test the hypothesis that natural selection targets genes by function and/or at given moments in the phylogenetic history of the species. These species possess some of the smallest genomes known, and analyses on the set of protein-coding genes common to all species in the study will shed light on the evolution of some of the most critical genes to living organisms. Genes that control cellular processes showed greater evidence of natural selection than genes of unknown function or genes associated with information processing and storage or metabolism. Moreover evidence of natural selection was only detected in the deepest branches of the Mycoplasmatales phylogeny, including one node where a host shift from land plants to insects likely occurred and another node where a host shift from land plants/insects to land vertebrates likely occurred. Many of the genes that showed the strongest evidence of natural selection (e.g. secA, secY, ftsH, ftsY, yidC, lepA, dnaK) encode proteins that are components of the Sec-dependent secretory pathway, which regulates the extracellular translocation of proteins. The Sec-dependent secretory pathway is proposed to play a role in speciation of Mycoplasmatales by altering the type and amount of secreted proteins, thereby affecting virulence of Mycoplasma sp. in response to infection of novel hosts.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7