alexa Spermine Treated-Adipose Tissue-Derived Multi-Lineage P
ISSN: 2157-7633

Journal of Stem Cell Research & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Spermine Treated-Adipose Tissue-Derived Multi-Lineage Progenitor Cells Improve Left Ventricular Dysfunction in a Swine Model of Chronic Myocardial Infarction

Hanayuki Okura1-3, Mitsuko Morita1, Maiko Fujita1, Kyoko Naba1, Nozomi Hasebe-Takada1, Akihiro Ichinose4 and Akifumi Matsuyama1,2*

1Platform of Therapeutics for Rare disease, National Institute of Biomedical Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, ARIC 105, 7-1-3 Doicho, Amagasaki, Hyogo, 660-0083, Japan

2The Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamada-oka, Suita, Osaka, 565-0879, Japan

3Adipo Medical Technology, Inc. 2-8-16, Ajiro-kita, Higashi-Osaka, Osaka, Japan

4Department of Plastic Surgery, Kobe University Hospital, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, Japan

*Corresponding Author:
Akifumi Matsuyama, M.D, Ph.D
Platform of Therapeutics for Rare disease
National Institute of Biomedical Innovation
National Institutes of Biomedical Innovation
Health and Nutrition, Japan
Tel: +81-6-6415-7155
Fax:
+81-6-6415-7156
E-mail: [email protected]

Received date January 19, 2016; Accepted date February 05, 2016; Published date February 12, 2016

Citation: Okura H, Morita M, Fujita M, Naba K, Takada NH, et al. (2016) Spermine Treated-Adipose Tissue-Derived Multi-Lineage Progenitor Cells Improve Left Ventricular Dysfunction in a Swine Model of Chronic Myocardial Infarction. J Stem Cell Res Ther 6:326. doi:10.4172/2157-7633.1000326

Copyright: © 2016 Okura H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Background: The polyamine spermine enhances differentiation of mouse embryonic stem cells into cardiac lineage. The aim of this study was to determine the effects of spermine on the differentiation of human adipose tissuederived multi-lineage progenitor cells (hADMPCs) into cardiomyocytes both in vitro and in vivo and any subsequent functional effect in a swine model of chronic myocardial infarction.

Methods and results: Spermine increased the expression of cardiac markers nkx2.5, islet-1, α-cardiac actin and cardiac troponin I (to 11.2-, 27.5-, 43.6- and 19.1-fold, relative to baseline, respectively) in hADMPCs. Chronic myocardial infarction model with left ventricular dysfunction was induced by balloon occlusion of the diagonal coronary artery followed by reperfusion, with subsequent similar procedure conducted one week later in the left ascending coronary artery (#6). Four weeks later, the immunosuppressed animals (with CyA 5.0 mg/kg intramuscularly (i.m) body weight/day) were transplanted with spermine-treated hADMPC (1×105 , 3×105 , 1×106 or 3×106 cells/kg body weight) via the coronary artery (#6). Cardiac function was assessed by echocardiography at 0, 4, 8 and 12 weeks post-transplantation. Transplantation of these cells improved cardiac function and the most effective dose was 3x105 cells/kg (ejection fraction; 33.4%, 47.0%, 51.5% and 52.9% at 0, 4, 8 and 12 weeks post-transplantation, respectively). At 12-week post-transplantation, spermine-treated hADMPCs differentiated into human-specific troponin I- and α-cardiac actin-positive cells in vivo.

Conclusion: Spermine induced differentiation of hADMPCs into cardiomyocytes both in vitro and in vivo and cellular cardiomyoplasty improved cardiac function. Cellular cardiomyoplasty using hADMPC could be potentially effective cell-based therapy.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords