alexa STAT1 is Constitutively Activated in the T/C28a2 Immort
ISSN: 2155-9899

Journal of Clinical & Cellular Immunology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

STAT1 is Constitutively Activated in the T/C28a2 Immortalized Juvenile Human Chondrocyte Line and Stimulated by IL-6 Plus Soluble IL-6R

Evan C Meszaros1 and Charles J Malemud1,2*
1Division of Rheumatic Diseases, Department of Medicine, Arthritis Research Laboratory, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
2Department of Anatomy, Case Western Reserve University School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
Corresponding Author : Charles J Malemud, Ph.D
Department of Medicine
Division of Rheumatic Diseases
University Hospitals Case Medical Center
Foley Medical Building, 2061 Cornell Road
Rm. 207, Cleveland, Ohio 44106-5076, USA
Tel: 216-844-7846/216-536-1945
Fax: (216) 844-2288
E-mail: [email protected]
Received December 13, 2014; Accepted March 15, 2015; Published March 22, 2015
Citation: Meszaros EC, Malemud CJ (2015) STAT1 is Constitutively Activated in the T/C28a2 Immortalized Juvenile Human Chondrocyte Line and Stimulated by IL-6 Plus Soluble IL-6R. J Clin Cell Immunol 6:307. doi:10.4172/2155-9899.1000307
Copyright: © 2015 Meszaros EC et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google
 

Abstract

T/C28a2 immortalized juvenile human chondrocytes were employed to determine the extent to which activation of Signal Transducers and Activators of Transcription-1 (STAT1) occurred in response to recombinant human interleukin-6 (rhIL-6) or rhIL-6 in combination with the soluble IL-6 receptor (sIL-6R). Two forms of STAT1, STAT1A and STAT1B, were identified on SDS-PAGE and western blotting with anti-STAT1 antibody. Western blotting revealed that STAT1 was constitutively phosphorylated (p-STAT1). Although incubation of T/C28a2 chondrocytes with rhIL-6 (50 ng/ml) increased p-STAT1A by Δ=22.3% after 30 min, this percent difference failed to reach significance by Chi-square analysis. Similarly, no effect of rhIL-6 (Δ=+10.7%) on p-STAT1B was seen at 30 min. In contrast, although the combination of rhIL-6 plus sIL-6R had no effect on p-STAT1A, rhIL-6 plus sIL-6R increased p- STAT1B by Δ=73.3% (p<0.0001) after 30 min compared to the control group and by Δ=56.7% (p<0.0001) compared to rhIL-6 alone. Janex-1, a Janus kinase-3-specific inhibitor (100 μM) partially reduced the effect of rhIL-6 on p- STAT1B by Δ=27.7% (p<0.05). The results of this study showed that STAT1A/STAT1B was constitutively activated in T/C28a2 chondrocytes. Although rhIL-6 increased p-STAT1B to a small extent, the combination of rhIL-6 plus sIL-6R was far more effective in stimulating STAT1B phosphorylation compared to controls or rhIL-6 alone. These data support the likelihood that although JAK3-mediated activation of STAT1 in T/C28a2 chondrocytes may involve the IL-6/IL-6R/gp130 pathway, these results indicated that STAT1 activation in response to IL-6 preferentially involved IL-6 trans-signaling via sIL-6R.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords