alexa Stochastic Nature of Salt Mass Transport in Porous Medi
ISSN: 2157-7587

Hydrology: Current Research
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Stochastic Nature of Salt Mass Transport in Porous Media Under Unstable Conditions

Kamal Mamoua*, Ashok Pandit and Howell Heck

Department of Civil Engineering, Florida Institute of Technology, Melbourne, FL 32901, USA

*Corresponding Author:
Kamal Mamoua
Department of Civil Engineering
Florida Institute of Technology
Melbourne, FL 32901, USA
Tel: +132144229
E-mail: [email protected]

Received Date: June 23, 2017 Accepted Date: June 28, 2017 Published Date: July 04, 2017

Citation: Mamoua K, Pandit A, Heck H (2017) Stochastic Nature of Salt Mass Transport in Porous Media Under Unstable Conditions. Hydrol Current Res 8: 278. doi: 10.4172/2157-7587.1000278

Copyright: © 2017 Mamoua K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The two main transport mechanisms that occur simultaneously under unstable flow conditions are transport of saltwater from an overlying salt source to the porous media, and transport of salt through the porous media. These mechanisms were simultaneously studied through two fixed mass experiments conducted over 15 days. The transport through the porous media was also studied via three continuous injection experiments lasting between 5 to 29 days. There was no hydraulic gradient across the porous media in any of the experiments. Experiments were conducted in a 1 cm thick plexiglass rectangular sand column (1.70 m × 0.61 m × 0.61 m). The saline source concentration was 36 g/l, and the source heights were 4.5 cm. The sand porosity and hydraulic conductivity were 32% and 9.0 m/d, respectively. The rate of mass transport from the source to the porous media was observed by measuring the salt concentration within the source, while the salt transport through the porous media was documented by measuring breakthrough curves at five locations within the sand column. Fixed mass experiment results, using mass analysis, showed that the salt transport from the source to the porous media was deterministic since both experiments produced identical rates of mass transport from the source to the porous media, the salt transport through the porous media was stochastic since the observed breakthrough curves at the five locations were considerably different. The breakthrough curves measured in three identical continuous injection experiments were also very different supporting the results of the fixed mass experiments. The implications of these findings are that, under unstable conditions, one can predict the salt mass that would enter from a salt source into the underlying porous media with certainty, one cannot predict the rate or pattern of salt transport through the porous media itself.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version