alexa Stress Fields Induced by Dislocation Loops in Isotropic
ISSN: 2168-9873

Journal of Applied Mechanical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Stress Fields Induced by Dislocation Loops in Isotropic CuNb Film- Substrate System

Wu W1*, Qian G2 and Cui X3
1State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, PR China
2Paul Scherrer Institute, Nuclear Energy and Safety Department, Laboratory for Nuclear Materials, 5232 Villigen PSI, Switzerland
3Sustainable Energy Systems Group, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 90R2002, Berkeley CA 94720, USA
*Corresponding Author : Wu W
State Key Laboratory of Automotive Safety and Energy
Tsinghua University, Beijing 100084, PR China
Tel: +8617710515502
E-mail: [email protected]
Received: February 15, 2016 Accepted: March 16, 2016 Published: March 19, 2016
Citation: Wu W, Qian G, Cui X (2016) Stress Fields Induced by Dislocation Loops in Isotropic CuNb Film-Substrate System. J Appl Mech Eng 5:205. doi:10.4172/2168-9873.1000205
Copyright: © 2016 Wu W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Based on linear superposition rules and fast discrete Fourier transformation, a semi-analytical solution is developed for calculating the elastic fields induced by dislocation loops in an isotropic thin film-substrate system. The elastic field problem of thin film-substrate system is decomposed into two sub-problems: bulk stress due to a dislocation loop in an infinite space, and correction stress induced by free surface and interface of the film-substrate system. Correction elastic field is linearly superimposed onto bulk elastic field to produce continuous displacement and traction stress across the interface plane of the perfectly-bounded film-substrate system. Firstly, calculation examples of dislocation loops in Cu-Nb film-substrate system are performed to demonstrate the calculation efficiency of the developed semi-analytical approach. Then, elastic fields of dislocation loops within Cu film and Nb substrate of the Cu-Nb film-substrate system are analyzed. Finally, effects of film thickness, loop positions are investigated, and it is found that the elastic fields of dislocation loop are influenced remarkably by these two factors.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords