alexa Surface-Bound Vascular Endothelial Growth Factor Promotes Prolonged Activation of Endothelial Cells: A New Technology for Capturing Endothelial Progenitor Cells by Intravascular Stents
ISSN: 2157-7552

Journal of Tissue Science & Engineering
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Surface-Bound Vascular Endothelial Growth Factor Promotes Prolonged Activation of Endothelial Cells: A New Technology for Capturing Endothelial Progenitor Cells by Intravascular Stents

Shotoku Tagawa1, Takehisa Matsuda2, Tatsuki Aomizu2, Makoto Kuwana2, Hiroshi Ohtake3, Go Watanabe3 and Masakazu Yamagishi1*

1Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan

2Genome Biotechnology Laboratory, Kanazawa Institute of Technology, Japan

3Division of Cardiovascular Surgery, Kanazawa University Graduate School of Medicine, Ishikawa, Japan

Corresponding Author:
Masakazu Yamagishi, MD, PhD
Division of Cardiovascular Medicine
Kanazawa University Graduate School of Medicine
13-1 Takara-machi, Kanazawa, 920-8641 Ishikawa, Japan
Tel: 81-76-265-2259
Fax: 81-76-234-4210
E-mail: [email protected]

Received date: February 25, 2014; Accepted date: April 5 2014; Published date: April 7, 2014

Citation: Tagawa S, Matsuda T, Aomizu T, Kuwana M, Ohtake H, et al. (2014) Surface-Bound Vascular Endothelial Growth Factor Promotes Prolonged Activation of Endothelial Cells: A New Technology for Capturing Endothelial Progenitor Cells by Intravascular Stents. J Tissue Sci Eng 5:1000140. doi:10.4172/2157-7552.1000140

Copyright: © 2014 Tagawa S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In -situ selective capture of the Endothelial Progenitor Cell (EPC) in the arterial blood stream can provide antithrombogenic and -cell proliferation potential to implanted intravascular stents. Therefore, we defined molecular mechanisms of EPC activation associated with stent surface-bound proteins. We sought suitable bound protein to capture and proliferate EPCs. Then, to determine whether and how long the surface-bound protein activates intracellular signal-transduction pathways of endothelial cells through its receptor, we studied the phosphorylation of key intracellular macromolecules including Vascular Endothelial Growth Factor (VEGF) Receptor (R)-2 (VEGFR-2), focal adhesion protein-tyrosine kinase, Akt, and extracellular signal-regulated kinase in human umbilical vein endothelial cells. We found the most suitable surface-bound protein was VEGF. Phosphorylation of these macromolecules continued for a long time up to 72 hours. Under these conditions, quantitative RT-PCR revealed time-dependent up-regulation of the mRNAs encoding three major extracellular matrix macromolecules, collagen IV, laminin-5, and fibronectin. Immuno histo- chemical analysis revealed that these macromolecules were secreted on the basal sides of adherent cells over time and that within a few days after initial adhesion occurred, deposition of these macromolecules shut down the EC adhesion. These results demonstrate that activation of the VEGF-VEGFR intracellular signaling pathway is significant for in situ EPC capture technology for intravascular stents, although further in vivo studies should be done to confirm these processes.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]micsonline.com

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords