alexa Synthesis and Crystallization Behavior of 3 mol% Yttria
ISSN: 2169-0022

Journal of Material Sciences & Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Synthesis and Crystallization Behavior of 3 mol% Yttria Partically Stabilized Zirconia (3Y-PSZ) Nanopowders by Microwave Pyrolysis Process

Bingbing Fan1*, Fan Zhang1,2, Jian Li1, Hao Chen1 and Rui Zhang1,3

1School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China

2Henan Information and Statistics Vocational College, Zhengzhou, Henan, 450002, China

3ZhengZhou Institute of Aeronautical Industry Management, Zhengzhou, Henan 450015, China

*Corresponding Author:
Bingbing Fan
School of Materials Science and Engineering
Zhengzhou University, Zhengzhou
Henan 450001 China
Tel: 8613783567772
Fax: 8637167782176

Received Date: December 06, 2016; Accepted Date: March 21, 2017; Published Date: March 31, 2017

Citation: Fan B, Zhang F, Li J, Chen H, Zhang R (2017) Synthesis and Crystallization Behavior of 3 mol% Yttria Partically Stabilized Zirconia (3Y-PSZ) Nanopowders by Microwave Pyrolysis Process. J Material Sci Eng 6: 327. doi: 10.4172/2169-0022.1000327

Copyright: © 2017 Fan B, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



A crystalline Nano powders of 3 mol% yttria-partially stabilized (3Y-PSZ) has been synthesized using ZrOCl2 and Y (NO3)3 as raw materials by microwave pyrolysis with a TE666 resonant mode at 700-900°C. The frequency of the microwave was 2.45 GHz with the maximum power of 10 KW, and a hybrid heating structure was used with insulation of porous mullite and SiC aided heaters. For comparison, conventional heating was performed in air at 750°C for 20 min. The as-synthesized products were characterized by SEM and TEM images, XRD patterns. It was found that microwave energy promotes the conversion of tetragonal ZrO2 (t-ZrO2) to monoclinic ZrO2 (m-ZrO2) phase compared with conventional pyrolysis. TEM images showed that highly dispersed 3Y-ZrO2 powders with ~23 nm in size were obtained by microwave pyrolysis at 750°C for 20 min.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version