alexa Synthesis and Dielectric Properties of Poly Benzyl Bis (Thiosemicarbazone)/Nano Cerium Oxide Nanocomposites
ISSN: 2150-3494

Chemical Sciences Journal
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Synthesis and Dielectric Properties of Poly Benzyl Bis (Thiosemicarbazone)/Nano Cerium Oxide Nanocomposites

Mojtaba Arianfar*

Faculty of Science, Department of Chemistry, Golestan University, Gorgan, Iran

*Corresponding Author:
Mojtaba Arianfar
Faculty of Science, Department of Chemistry
Golestan University, Gorgan, Iran
Tel: +981712231801
Fax: +981712235006
E-mail: [email protected]

Received Date: November 16, 2016; Accepted Date: November 24, 2016; Published Date: November 28, 2016

Citation: Arianfar M (2016) Synthesis and Dielectric Properties of Poly Benzyl Bis (Thiosemicarbazone)/Nano Cerium Oxide Nanocomposites. Chem Sci J 7:143. doi: 10.4172/2150-3494.1000143

Copyright: © 2016 Arianfar M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



In this study, benzyl bis (thiosemicarbazole) monomer, polymer and poly benzyl bis (thiosemicarbazone) (PBTC) /CeO2 nanocomposites were synthesized through in situ polymerization and their dielectric properties in presence of metal oxide, were investigated. Prepared samples were characterized by Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Structure and morphology of prepared nanocomposites were evaluated by Scanning Electron Microscopy (SEM) and XRD techniques. The dielectric properties were investigated in the frequency range 50 Hz - 20 MHz and the temperature range between 40°C to 150°C. The dielectric constant (ε) and dielectric loss (tan δ) is measured for different compositions of nanocomposites. Particle sizes of CeO2 were calculated to be 10 nm from Debye-Scherrer equation. FT-IR verified polymerization of monomers. The dielectric properties of cerium oxide nanocomposite were studied for different frequencies at different temperatures. The dielectric constant and the dielectric loss of the cerium oxide nanocomposite decreased with increase in frequency. The AC electrical conductivity study revealed that the conduction depended on both the frequency and the temperature.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version