alexa Synthetic Biology: Computational Modeling Bridging the
ISSN: 2332-0737

Current Synthetic and Systems Biology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Synthetic Biology: Computational Modeling Bridging the Gap between In Vitro and In Vivo Reactions

Vilma G Duschak*

Instituto Nacional de Parasitología, ANLIS-Malbrán, Ministerio de Salud de la Nación, Argentina

*Corresponding Author:
Duschak VG
Instituto Nacional de Parasitología
“Dr. Mario Fatala Chaben”
ANLIS-Malbrán, Ministerio de Salud de la Nación. Av. Paseo Colon 568 (1063)
Buenos Aires, Argentina
Tel: +5411-4331/4010/4019
FAX: +5411-43317142
E-mail: [email protected]

Received date: June 10, 2015; Accepted date: November 20, 2015; Published date: November 24, 2015

Citation: Duschak VG (2015) Synthetic Biology: Computational Modeling Bridging the Gap between In Vitro and In Vivo Reactions. Curr Synthetic Sys Biol 3:127. doi:10.4172/2332-0737.1000127

Copyright: © 2015 Duschak VG. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



The synthetic biology firstly refers to the design and fabrication of biological components and systems that do not already exist in the natural world and to the redesign and fabrication of existing biological systems. The link of computational tools to cell-free systems, converts to synthetic biology is an emerging field expert to build artificial biological systems through the combination of molecular biology and engineering approaches. Herein, most findings describing the differences between in vivo and in vitro reactions and systems have been extensively described. The specific applications of computational tools to the design of an in vitro gene expression platform known as the artificial cell, its components and the strategies developed to predict activities of processor modules and to control the expression of genes have been discussed in detail. Potential applications of artificial cells in drug delivery, in biosynthesis, among others, have been described. Two sources of models for the possible developing of the computational toolbox for cell-free synthetic biology include: i) Physical models of single cellular components able to be created from original principles, guiding to focus on tools to predict structure and dynamics of particular components; ii) A wide-range of mathematical models for predicting system dynamics of natural cells. Regarding modeling algorithms, there is a broad kind of models available for synthetic biologists and some areas of potential growth identified for researchers interested in developing tools for cell-free systems. Among them, deterministic, exploratory, molecular dynamic, stochastic, all atom models, among others, have been described and discussed. By using computational models to set up quantitative differences between in vitro reactions and in vivo systems, could identify specific mechanisms in living organisms to be further used in in vitro reactions in order to facilitate their processes. Thus, computational modeling would bridge the gap between in vitro and in vivo reactions.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version