alexa Targeting the Hedgehog Signaling Pathway by Glasdegib Limits the Self- Renewal of MDS-Derived Induced Potent Stem Cells (iPSC)
ISSN: 1948-5956

Journal of Cancer Science & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Targeting the Hedgehog Signaling Pathway by Glasdegib Limits the Self- Renewal of MDS-Derived Induced Potent Stem Cells (iPSC)

Tetsuzo Tauchi1*, Seiichi Okabe1, Seiichiro Katagiri1, Yuko Tanaka1, Kaoru Tohyama2 and Kazuma Ohyashiki1

1Department of Hematology, Tokyo Medical University, Tokyo, Japan

2Kawasaki Med School, Kurashiki, Japan

*Corresponding Author:
Tetsuzo Tauchi
Department of Hematology, Tokyo Medical University
6-7-1 Nishishinjuku, Shinjukuku, Tokyo, 160-0023, Japan
Tel: 81333426111
Fax: 81353816651
E-mail: [email protected]

Received date: May 16, 2017; Accepted date: June 13, 2017; Published date: June 15, 2017

Citation: Tauchi T, Okabe S, Katagiri S, Tanaka Y, Tohyama K, et al. (2017) Targeting the Hedgehog Signaling Pathway by Glasdegib Limits the Self-Renewal of MDS-Derived Induced Potent Stem Cells (iPSC). J Cancer Sci Ther 9:479-484. doi: 10.4172/1948-5956.1000462

Copyright: © 2017 Tauchi T, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Objective: Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders characterized by no efficient hematopoiesis and frequent progression to acute myeloid leukemia (AML). Even in low risk MDS, clonal hematopoiesis already dominates at diagnosis, and clones found in secondary AML originate from the MDS stage of disease, highlighting the need to specifically target the MDS-initiating clone. Glasdegib is a potent and selective hedgehog pathway inhibitor that acts by binding Smoothened (SMO) and blocking signal transduction. Glasdegib demonstrated preliminary antitumor activity in a phase I trial, when given as monotherapy in patients with several hematopoietic malignancies. In the present study, we investigated the molecular mechanisms by which glasdegib regulate the self-renewal of MDS-derived iPS cells (iPSCs) in vivo.

Methods: We generated iPSCs from bone marrow mononuclear cells of an MDS patient with chromosome 5 deletion and complex karyotypic abnormalities. We examined the activity of glasdegib against MDS-derived iPSCs transferred NOD/SCID mice in vivo and in vitro. We performed the serial in vivo transplantation to assess the effects of hedgehog inhibition on long term self-renewal. NOD/SCID mice were injected with MDS-iPSCs then treated with glasdegib.

Results: We observed that glasdegib significantly reduced the self-renewal of NOD/SCID re-populating cells from MDS-derived iPSC during serial transplantation in vivo. Further, NOD/SCID mice were injected with MDS-iPSCs, and then treated with glasdegib on day 21 for 7 days. These treatments reduced the population of CD34+CD38-cells. To investigate the entire the apoptosis-induction pathways by hedgehog inhibition, MSD-L cells were incubated with 5-azacytidine and glasdegib for 72 hrs. Glasdegib enhanced the expression of cleaved PARP, cleaved caspase-3, p21 and reduced expression of c-Myc.

Conclusion: Our pre-clinical results indicate that glasdegib have potential as an important option for controlling the drug-resistant MDS-initiating cells. It is expected that the glasdegib may become extremely useful therapeutic interventions in a number of hematological neoplasms, including MDS, where the persistence of cancer stem cells.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version