alexa Targeting Tumor Metabolism: A Biochemical Explanation Related to A Systems Biology Lipidomics Based Approach
ISSN-2155-9929

Journal of Molecular Biomarkers & Diagnosis
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Targeting Tumor Metabolism: A Biochemical Explanation Related to A Systems Biology Lipidomics Based Approach

Vincent van Ginneken*

Blue Green Technologies, Runderweg, Lelystad, Netherlands

*Corresponding Author:
Vincent van Ginneken
Blue Green Technologies, Runderweg 6
8219 Lelystad, Netherlands
Tel: 0031638071180
E-mail: [email protected]

Received Date: November 15, 2016; Accepted Date: January 26, 2017; Published Date: January 28, 2017

Citation: Ginneken V (2017) Targeting Tumor Metabolism: A Biochemical Explanation Related to A Systems Biology Lipidomics Based Approach. J Mol Biomark Diagn S2:022. doi: 10.4172/2155-9929.S2-022

Copyright: © 2017 Ginneken V. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

 

Abstract

This mini-review presents the current state of our knowledge of biomarkers in the selected oncology research area of “adipose tumors”: lipomas (benign) and liposarcomas. (malign). To our awareness never before have clear arguments been given underpinning a hypothesis that convincingly stated that malignant transformation from a lipoma can occur towards a liposacroma based on a biochemical model. Acidic pH-due to lactic acid- derived from cancer cells may induce failed reprogramming of normal differentiated cells adjacent tumor cells and turn them into cancer cells. An important observation at this cellular response of aerobic fermentation (“Warburg effect”) is that it occurs already at pre-carcinogenic conditions so it has another major aiming, we hypothesize to maintain the redox balance in combination with glutaminolysis and reversed β-oxidation in order to keep the Krebs cycle spinning. This peculiar observation convinced us-after studying obesity and two novel biomarkers for type 2 diabetes-that most cancers are a metabolic and redox balance disease. In addition, we describe the present role of Lipoproteins like cholesterol as carrier of anti-cancer medicine but hypothesize simultaneously that “fat particles” carried by lipoproteins can result in metastasis of “lipid tumors”. We give four demands for a suitable biomarker-not only for a metabolomics based on a lipidomics based approach-but in general. The final culprit of this review is the biochemical model for this 36:1 phosphatidylcholine biomarker which was not only found in all non-adipose tissue but also in the blood. Hypoxic conditions in white adipose tissue (WAT) either during obesity, either in the microenvironment of an adipose tumor will result in further growth based of fatty acid (FA) chain elongation based on a reversal of the β-oxidation under hypoxia in order to maintain the redox balance and keep the Krebs cycle spinning.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords