alexa The Application of Advanced Nanostructured Film in Electrosurgical Device: Anti-Sticking Behavior and Thermal Injury
ISSN: 2157-7439

Journal of Nanomedicine & Nanotechnology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Application of Advanced Nanostructured Film in Electrosurgical Device: Anti-Sticking Behavior and Thermal Injury

Keng-Liang Ou1,2,3,4 and Han-Yi Cheng1,2,3*

1Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei 110, Taiwan

2Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan

3Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan

4Department of Dentistry, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan

*Corresponding Author:
Han-Yi Cheng
Graduate Institute of Biomedical
Materials and Tissue Engineering
Taipei Medical University
Taipei 110, Taiwan
Tel: 886-2-27361661/5401
Fax: 886-2-27395524
E-mail: [email protected]

Received Date: March 30, 2015; Accepted Date: April 25, 2015; Published Date: May 15, 2015

Citation: Ou KL, Cheng HY (2015) The Application of Advanced Nanostructured Film in Electrosurgical Device: Anti-Sticking Behavior and Thermal Injury. J Nanomed Nanotechnol 6:291. doi:10.4172/2157-7439.1000291

Copyright: © 2015 Ou KL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Minimally invasive surgery is performed using an endoscope and other instruments including the electrosurgical units. However, concerns including surgical smoke, tissue sticking, and thermal injury are remaining in electro surgery.

Aims: Accordingly, a newly developed electrosurgical electrode coating with hydrogenated Cu-incorporated diamond-like carbon (DLC-Cu) film is purposed to improve the instrument performance.

Methods: The morphologies of DLC-Cu surfaces were characterized using transmission electron microscopy, scanning electron microscopy and atomic force microscopy. In this study, lesions were made on the liver lobes of adult rats, using a monopolar electrosurgical unit equipped with untreated stainless steel electrodes or treated-electrodes. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days post-operatively.

Results: Treated-electrodes generate less sticking tissues and adhesive blood cells. Thermography revealed the surgical temperature in liver tissue from the treated -electrode was significantly lower than the untreated-electrode. Total injury area of livers treated with treated-electrodes was significantly smaller than the untreated-electrodes treatment. Moreover, treated-electrodes caused a relatively smaller area of lateral thermal injury, a smaller area of fibrotic tissue, and a faster process of remodeling than the untreated-electrodes. Western blot analysis showed that rats treated with treated-electrode expressed lower levels of NF-κB, caspase-3, and MMP-9 than untreated-electrode. Immunofluorescence staining for caspase-3 revealed the untreated-electrode caused more serious injury.

Conclusions: This study reveals that the plating of electrodes with hydrogenated Cu-incorporated diamond-like carbon film is an efficient method for improving the performance of electrosurgical units. However, more tests must be carried out to confirm these promising findings in human patients.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords