alexa The Autologous Gelsolin Combined with Exogenous Nucleot
ISSN: 2157-7013

Journal of Cell Science & Therapy
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Autologous Gelsolin Combined with Exogenous Nucleotides enhance Chondrogenic Differentiation in Equine Adipose Derived Mesenchymal Stromal Cells - An In Vitro Research

Krzysztof Marycz1,2, Monika Maredziak1*, Agnieszka Smieszek1,2, Jakub Grzesiak1 and Anna Siudzinska1

1Electron Microscopy Laboratory, University of Environmental and Life Sciences Wroclaw; Kozuchowska 5b, 51-631 Wroclaw, Poland

2Wroclaw Research Centre EIT+; Stablowicka 147, 54-066 Wroclaw, Poland

*Corresponding Author:
Monika Maredziak
Electron Microscopy Laboratory
Kozuchowska 5b, 51-631 Wroclaw, Poland
Tel: +48 71 3205 888
Fax: +48 713205876
E-mail: [email protected]

Received Date: July 02, 2014; Accepted Date: August 27, 2014; Published Date: August 29, 2014

Citation: Marycz K, Maredziak M, Smieszek A, Grzesiak J, Siudzinska A (2014) The Autologous Gelsolin Combined with Exogenous Nucleotides enhance Chondrogenic Differentiation in Equine Adipose Derived Mesenchymal Stromal Cells - An In Vitro Research. J Cell Sci Ther 5:174. doi: 10.4172/2157-7013.1000174

Copyright: © 2014 Marycz K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Background: Nowadays, veterinary practice, involves treatment of disorders associated with cartilage degeneration using advanced therapy, based on mesenchymal stromal cells application. Preparation of cells for the transplantation requires in vitro culture and evaluation of their chondrogenic potential.

Purpose: To determine if autologous gelsolin derived from equine serum and exogenous nucleotides may enhance the metabolic activity and chondrogenic differentiation of equine adipose derived mesenchymal stromal cells (EqASCs).

Methods: Mesenchymal stem cells were isolated from equine subcutaneous fat tissue. Standard growth medium was supplemented with 1% of gelsolin or/and 0.1 mg/ml of nucleotides. Proliferation activity of the cells was determined basing on results obtained with cytotoxic assay and analysis of microvesicles shedding. Morphology, cytophysiological activity and chondrogenic differentiation potential were evaluated utilizing light, fluorescent and scanning electron microscopy. The effects of chondrogenic stimulation were determined via (i) analysis of gene expression for cytoskeleton and matrix proteins; (ii) proteoglycan histochemistry and (iii) analysis of culture growth pattern and chondro-nodule formation.

Results: The enhancement of proliferation activity was noticed in cultures stimulated with exogenous nucleotides. Although the addition of gelsolin did not affect EqASCs proliferation, it contributed to cytoskeleton integrity. Both investigated factors positively influenced on chondrogenic differentiation – gelsolin through stabilization of cytoskeleton proteins expression, while nucleotides by promoting nodules formation. Combination of gelsolin and nucleotides enhanced cells proliferation, what was reflected by higher cellular activity and microvesicles shedding and influenced on chondro nodules formation.

Conclusions: Autologous gelsolin and exogenous nucleotides implemented in the in vitro cultures of mesenchymal stromal stem cells isolated from adipose tissue may enhance cellular integrity, proliferation and chondrogenic differentiation of those cells, thus directly might influence on regenerative potential of adipose derived mesenchymal stromal stem cells transplants used for equine osteoarthritis treatment.

Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version