alexa The Bimodal Nature of Neurovascular Coupling: Slow Toni
ISSN: 1747-0862

Journal of Molecular and Genetic Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Mini Review

The Bimodal Nature of Neurovascular Coupling: Slow Tonic and Rapid Phasic Responses are Separately Controlled by Specific Astrocyte Metabotropic and Ionotropic Glutamate Receptors

Baslow MH* and Guilfoyle DN

Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA

*Corresponding Author:
Dr. Morris H Baslow
Center for Biomedical Imaging and Neuromodulation
Nathan Kline Institute for Psychiatric Research
140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
Tel: 845 398 5573
Fax: 845 398 5472
E-mail: [email protected]

Received Date: April 25, 2017; Accepted Date: May 02, 2017; Published Date: May 05, 2017

Citation: Baslow MH, Guilfoyle DN (2017) The Bimodal Nature of Neurovascular Coupling: Slow Tonic and Rapid Phasic Responses are Separately Controlled by Specific Astrocyte Metabotropic and Ionotropic Glutamate Receptors. J Mol Genet Med 11:266 doi: 10.4172/1747-0862.1000266

Copyright: © 2017 Baslow MH, et al . This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited



Neurons, by virtue of their complex and continuously changing signaling roles in brain, must be able to regulate access to energy in order to maintain their ability to communicate meaningful frequency-encoded information. This is accomplished by release of neurotransmitters to astrocytes that in turn signal the vascular system to increase cerebral blood flow (CBF). This process has been termed “neurovascular coupling” (NVC). It has also been observed that NVC is bimodal in that there are two separate mechanisms for control of CBF. One type is rapid [phasic] in response to changes in glutamatergic synaptic activity and release of glutamate (Glu), K+ and nitric oxide (NO). Uptake of Glu and K+ by astrocytes induces Ca2+ waves activating regional astrocyte syncytium have to liberate prostaglandins which in turn dilate capillaries by relaxing surrounding pericytes. The NO dilates arterioles by relaxing surrounding smooth muscle cells. These agents acting in concert sharply increase CBF within 1-3 seconds. The other type is slow [tonic] reflecting ongoing neuronal metabolic activity of all neuron types independent of changes in synaptic activity or astrocyte Ca2+ waves and eliciting modest oscillations in CBF in 10’s of seconds. In this review, we describe two neuronal signaling mechanisms that match the criteria for phasic and for tonic regulation of CBF. The difference is being the nature and source of the “Glu” released and of their targeted astrocyte receptors. Dependence on synaptic activity limits phasic responses to gray matter, but tonic responses can regulate CBF in both gray matter and white matter and may be the primary regulator of CBF in white matter.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version