alexa The Effect of Electromagnetic Field Treatment on Recovery from Spinal Cord Injury in a Rat Model Clinical and Imaging Findings
ISSN: 2376-0281

International Journal of Neurorehabilitation
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Effect of Electromagnetic Field Treatment on Recovery from Spinal Cord Injury in a Rat Model Clinical and Imaging Findings

Yaron Segal1*, Lear Segal1, Ester Shohami1, Efrat Sasson2, Tamar Blumenfeld-Katzir2, Abraham Cohen3, Aharon Levy3 and Ariela Alter1

1BrainQ Technologies Ltd. – Jerusalem, Israel

2BioImage – Professional Imaging Services, Haifa, Israel

3Pharmaseed Ltd., Ness -Ziona, Israel

*Corresponding Author :
Yaron Segal
BrainQ Ltd. P.O. Box 68135
Jerusalem, 9339228, Israel
Tel: +972-54-5296025
E-mail: [email protected]

Received date: March 01, 2016 Accepted date: March 21, 2016 Published date: March 28, 2016

Citation: Segal Y, Segal L, Shohami E, Sasson E, Blumenfeld-Katzir T, et al. (2016) The Effect of Electromagnetic Field Treatment on Recovery from Spinal Cord Injury in a Rat Model – Clinical and Imaging Findings. Int J Neurorehabilitation 3:203. doi: 10.4172/2376-0281.1000203

Copyright: © 2016 Segal Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Background: Spinal cord injury (SCI) refers to spinal cord damage arising from trauma, disease or degeneration. At present, there is still no treatment for any paraplegia resulting from SCI. We have previously shown that very low intensity, low frequency, electromagnetic field treatment (VLIFE) promotes neuronal plasticity after stroke and as a result, improves clinical recovery.
Objective: In this paper we studied an innovative electromagnetic field treatment for SCI in an animal model.
Methods: SCI was caused to 20 rats by hemi crush. The animals were divided into three groups, 7 animals were not treated, two groups received VLIFE treatment for two months, 7 rats received 15.72 Hz, and 6 rats received a dedicated treatment of 26 Hz. Clinical evaluation was performed weekly, and imaging assessment monthly.
Results: Clinical performance assessed by a locomotor test, show significant clinical improvement of the neurological function following treatment with VLIFE (p < 0.05). Imaging results after two months of treatment, by MRI including DTI analysis, show that the non-treated (sham) spinal cord has not recovered, while in the treated animal the fibers of the spinal cord were preserved and rewired. VLIFE treatment has major benefits on injured spinal cord: preservation of the spinal cord from further degradation caused by the edema and internal cord scars, and rewiring of the spinal cord resulting with rehabilitation and improved clinical performance.
Conclusions: Low intensity low frequency electromagnetic field treatment may be beneficial for rehabilitation from SCI, human clinical trials are planned.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords