alexa The Effect of Shoe Weight on Sprint Performance: A Biomechanical Perspective

Journal of Ergonomics
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Effect of Shoe Weight on Sprint Performance: A Biomechanical Perspective

Maurice Mohr*, Hendrik Enders, Sandro R Nigg and Benno M Nigg

Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Alberta, Canada

*Corresponding Author:
Maurice Mohr
Human Performance Laboratory
Faculty of Kinesiology, University of Calgary
2500 University Drive NW, Calgary
Alberta T2N 1N4, Canada
Tel: +1 (587) 890-3922
E-mail: [email protected]

Received date: June 30, 2015 Accepted date: August 26, 2015 Published date: March 22, 2016

Citation: Maurice M, Enders H, Sandro RN, Benno MN (2016) The Effect of Shoe Weight on Sprint Performance: A Biomechanical Perspective.J Ergonomics 6:163. doi:10.4172/2165-7556.163

Copyright: © 2016 Mohr M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Background: The benefit of light-weight shoes for athletic performance has been recognized in both sport and professional environments. However, the biomechanical mechanism by which reduced shoe weight improves athletic performance is unknown. The aim of this study was to determine the effect of basketball shoe weight on performance and corresponding lower-extremity biomechanics for the example of a 10 m sprint start.

Methods: For twenty-two male recreational athletes, sprint start (3.7 m) and 10 m sprint performances were quantified from timing lights in three basketball shoe conditions (light=352 g; medium=510 g; heavy=637 g). Ground reaction forces and kinematics and kinetics of the lower-extremity joints during the first sprinting stride were determined using 3D-motion analysis and a force platform. A Support Vector Machine analysis and linear regression were performed to analyze biomechanical differences between the shoe conditions and their association with performance. Results: Average sprint start and 10 m sprint times in the light shoe were significantly reduced compared to the heavy shoe by up to 24 ms (3%) and 32 ms (1.8%), respectively. The reduction in shoe weight led to significantly different ankle joint biomechanics with a 5% increase in peak plantarflexion velocity in the light shoe that was associated with a decrease in sprint start time.

Conclusion: Lighter basketball shoes enhance sprint start performance, likely by facilitating faster ankle plantarflexion during the first sprinting stride. This mechanism can promote player performance during important game scenarios and encourages further innovative light-weight shoe concepts not only in sports but also in working environments that require high athletic performance.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version