alexa The Effect of Varying Soil Organic Levels on Phytoextraction of Cu and Zn uptake, enhanced by chelator EDTA, DTPA, EDDS and Citric Acid, in Sunflower (<em>Helianthus annuus</em>), Chinese Cabbage (<em>Brassica campestris</em>), Cattail (<em>Typha latifolia</em>), and Reed (<em>Phragmites communis</em>) | Abstract
ISSN: 2161-0525

Journal of Environmental & Analytical Toxicology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Effect of Varying Soil Organic Levels on Phytoextraction of Cu and Zn uptake, enhanced by chelator EDTA, DTPA, EDDS and Citric Acid, in Sunflower (Helianthus annuus), Chinese Cabbage (Brassica campestris), Cattail (Typha latifolia), and Reed (Phragmites communis)

T.Y. Yeh*, C.F. Lin, C.C. Chuang and C.T. Pan
Department of Civil and Environmental Engineering, National University of Kaohsiung, Taiwan
Corresponding Author : T. Y. Yeh
National University of Kaohsiung
Department of Civil and Environmental Engineering
Kaohsiung 811, Taiwan
Tel: 886-7-591-9536
Fax: 886-7-591-9376 E-mail: [email protected]
Received November 25, 2011; Accepted May 24, 2012; Published May 26, 2012
Citation: Yeh TY, Lin CF, Chuang CC, Pan CT (2012) The Effect of Varying Soil Organic Levels on Phytoextraction of Cu and Zn uptake, enhanced by chelator EDTA, DTPA, EDDS and Citric Acid, in Sunflower (Helianthus annuus), Chinese Cabbage (Brassica campestris), Cattail (Typha latifolia), and Reed (Phragmites communis). J Environ Anal Toxicol 2:142. doi: 10.4172/2161-0525.1000142
Copyright: © 2012 Yeh TY, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Focusing on the influence of organic soil contents on the Phytoextraction of Cu and Zn, assisted by chelators EDTA, DTPA, EDDS, and citric acid, in Sunflower (Helianthus annuus), Chinese Cabbage (Brassica campestris), Cattail (Typha latifolia), and Reed (Phragmites communis), this study demonstrates prominent Cu and Zn uptake enhancement. Soil organic concentration has been shown to be a critical factor in metal uptake and bioavailability in plants. Organic content has less soil nutrients, and less negatively charged functional groups, such as carboxical, phenolical and hydroxyl groups. This allows adsorption of negative free metal cations, and reduces metal mobility. Regardless of various soil organic contents, this study ranks Cattail, Reed, Sunflower, and Chinese Cabbage, in descending order of propagation efficacy. The mechanism of metal is apoplastic transportation. In plant cells, the apoplast is the free diffusional space outside the plasma membrane. It contains high concentrations of carboxylic groups which act as effective cation exchangers. The negatively charged chelator complexes are prevented from being bound to the cell walls of the roots, and allow complexes to enter into the cells. Metal chelator complexes are subsequently translocated to the aerial part of plant via the passive apoplastic pathway. Metal is seen to accumulate in the roots, stems, and leaves, in descending order of concentration; a result similar to most other research conclusions.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7