alexa The Fractal-like Complexity of Heart Rate Variability beyond Neurotransmitters and Autonomic Receptors: Signaling Intrinsic to Sinoatrial Node Pacemaker Cells
ISSN: 2329-6607

Cardiovascular Pharmacology: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Short Communication

The Fractal-like Complexity of Heart Rate Variability beyond Neurotransmitters and Autonomic Receptors: Signaling Intrinsic to Sinoatrial Node Pacemaker Cells

Yael Yaniv1*, Alexey E Lyashkov2 and Edward G Lakatta1*

1Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA

2Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, Maryland, USA

Corresponding Author:
Yael Yaniv
Laboratory of Cardiovascular Science
Biomedical Research Center, Intramural Research Program
National Institute on Aging, NIH, Baltimore, Maryland, USA
E-mail: [email protected]
Edward G Lakatta
Laboratory of Cardiovascular Science
Biomedical Research Center, Intramural Research Program
National Institute on Aging, NIH, Baltimore, Maryland, USA
E-mail: [email protected]

Received July 25, 2013; Accepted August 22, 2013; Published August 27, 2013

Citation: Yaniv Y, Lyashkov AE, Lakatta EG (2013) The Fractal-like Complexity of Heart Rate Variability beyond Neurotransmitters and Autonomic Receptors: Signaling Intrinsic to Sinoatrial Node Pacemaker Cells. Cardiol Pharmacol 2:111. doi:10.4172/2329-6607.1000111

Copyright: © 2013 Yaniv Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The heart rate and rhythm are controlled by complex chaotic neural, chemical and hormonal networks which are not strictly regular, but exhibit fluctuations across multiple time scales. A careful assessment of the Heart Rate Variability (HRV) offers clues to this complexity. A reduction in HRV, specifically in advanced age, is associated with increase in morbidity and mortality. Mechanisms that induce this decrease, however, have not been fully elucidated. The classical literature characterizes changes in HRV as a result of changes in the balance of competing influences of the sympathetic and parasympathetic autonomic impulses delivered to the heart. It has now become clear, however, that the heart rate and HRV are also determined by intrinsic properties of the pacemaker cells that comprise sinoatrial node, and that these properties respond to autonomic receptor stimulation in a non-linear mode. That HRV is determined by both the intrinsic properties of pacemaker cells in the sinoatrial node and the competing influences of the two branches of the autonomic neural input to the cells requires an expansion of our perspective about mechanisms that govern HRV in the normal heart, and how HRV changes with aging in health and in heart diseases.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]ine.com

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version