alexa The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration | OMICS International | Abstract
ISSN: 2155-6156

Journal of Diabetes & Metabolism
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration

Susan Westfall1, Nikita Lomis1, Surya Pratap Singh2, Si Yuan Dai1 and Satya Prakash1*

1Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Department of Experimental Medicine, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Quebec, H3A2B4, Canada

2Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India

Corresponding Author:
Satya Prakash
Biomedical Technology and Cell Therapy Research Laboratory
Department of Biomedical Engineering, Department of Experimental Medicine
Faculty of Medicine, McGill University
3775 University Street, Montreal, Quebec, H3A2B4, Canada
Tel: 1-514-398-3676
Fax: 1-514-398-7461
E-mail: [email protected]

Received Date: April 30, 2015; Accepted Date: June 30, 2015; Published Date: July 04, 2015

Citation: Westfall S, Lomis N, Singh SP, Dai SY, Prakash S (2015) The Gut Microflora and its Metabolites Regulate the Molecular Crosstalk between Diabetes and Neurodegeneration. J Diabetes Metab 6:577. doi:10.4172/2155-6156.1000577

Copyright: © 2015 Westfall S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The gut microflora is a community of trillions of bacterial cells synergistically inhabiting the human gastrointestinal tract. These microbes contact everything that is consumed and release regulatory factors that affect host energy homeostasis, lipid and carbohydrate metabolism, activation of immune cells, oxidative state, epithelial cell wall integrity and even neurological signals. The gut microflora is essentially an independent organ supporting human health where imbalances in the gut community populations (dysbiosis) manifest in disease. Diabetes and neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease share a similar molecular pathology rooted in gut microflora activity. Both of these conditions are associated with a dysbiosis characterized by low species diversity, a higher proportion of pathobionts at the expense of symbionts, an abundance of proinflammatory microbes and fewer butyrate-producing strains. Many of these factors can be ameliorated with Lactobacillus spp. and Bifidobacterium spp. probiotic treatment aimed to reestablish healthy gut microflora diversity. Indeed, certain commensal and pathogenic strains promote chronic low-grade inflammation that stresses cellular infrastructure eventually leading to apoptosis in both the pancreas and the brain. Also, lack of some beneficial fermentation products such as butyrate and ferulic acid initiates a cascade of events disrupting metabolic homeostasis. Finally, signaling initiated by the microflora and its metabolites has been shown to disrupt the delicate intracellular balance of PI3K/Akt/mTOR signaling, which fundamentally regulates events leading up to diabetes and neurodegenerative disease pathogenesis. The following review investigates the relationship between the manifestation and molecular signaling of diabetes and neurodegenerative disorders and how the balance of gut microflora populations is critical to both prevent and possibly treat these diseases.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7