alexa The Kinetics of Alcoholic Fermentation by Two Yeast Strains in High Sugar Concentration Media
ISSN: 2155-9821

Journal of Bioprocessing & Biotechniques
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Kinetics of Alcoholic Fermentation by Two Yeast Strains in High Sugar Concentration Media

Angela Zinnai*, Francesca Venturi, Chiara Sanmartin and Gianpaolo Andrich
Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
Corresponding Author : Angela Zinnai
Department of Agriculture, Food and Environment
University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
Tel: +39 050 2216632
Fax: +39 050 2216636
Email: [email protected]
Received September 03, 2013; Accepted October 23, 2013; Published October 31
Citation: Zinnai A, Venturi F, Sanmartin C, Andrich G (2013) The Kinetics of Alcoholic Fermentation by Two Yeast Strains in High Sugar Concentration Media. J Bioprocess Biotech 3:137. doi: 10.4172/2155-9821.1000137
Copyright: © 2013 Zinnai A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
 

Abstract

Over the last two decades, most of Italian vines have produced grapes with higher sugar to total acid ratios, greater concentrations of phenols and aromatic compounds and greater potential wine quality. As a consequence, the musts obtained by these grapes are more difficult to process because of the risk of slowing or stuck of fermentation. With the aim of describing the time evolution of the sugars bioconversion during alcoholic fermentation, the kinetics of the D-glucose and D-fructose degradations, promoted by two yeast strains (Saccharomyces cerevisiae (strain C) e Saccharomyces bayanus (strain B)), was investigated using synthetic media, added or not with ethanol. The concentrations of both the substrates and the products of the sugars conversions, as well as the number of viable cells of yeasts, were determined as a function of the alcoholic fermentation time and the related kinetics constants determined. If the reaction medium contained high concentrations of both glucose and fructose, the strains showed significant different fermentatory ability. In these conditions a stuck of fermentation occurred and the remaining sugar was only fructose (strain C) or prevailing fructose (strain B). If the reaction medium contained only glucose as substrate, the strain C seemed more efficient while the kinetics behavior changed completely in presence of only fructose. On the basis of the information collected using this kinetic approach, it would be possible to develop technical data sheets, specific for each yeast strain, useful to choose the optimal microbial strain as a function of the different operative conditions. Moreover the kinetic constant of hexose conversion could be adopted as bio-markers in selection and breeding of wine yeast strains having a lower tendency for sluggish fructose fermentation.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords