alexa The Reliability of the Bilateral Trigeminal Roots-motor
ISSN: 2161-1122

Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

The Reliability of the Bilateral Trigeminal Roots-motor Evoked Potentials as an Organic Normalization Factor: Symmetry or Not Symmetry?

Frisardi G1,2*, Chessa G2, Lumbau FA2, Okkesim S3, Akdemir B4, Kara S3, Staderini EM5, Ferrante A1 and Frisardi F1

1“Epochè Orofacial Pain Center”, Rome, Italy

2Department of Oral Rehabilitation, University of Sassari, Italy

3Institute of Biomedical Engineering, Fatih University, Istanbul, Turkey

4Department of Electrical and Electronics Engineering, Selcuk University, Konya, Turkey

5Western Switzerland Universities of Applied Sciences, HEIG-VD, Switzerland

*Corresponding Author:
Gianni Frisardi
Epochè Orofacial Pain Centre
Via G. Matteotti 91, Nettuno, 00048 (Rome) Italy
Tel: +39 06 9804953
E-mail: [email protected]

Received date: June 26, 2014; Accepted date: August 27, 2014; Published date: August 29, 2014

Citation: Frisardi G, Chessa G, Lumbau FA, Okkesim S, Akdemir B, et al. (2014) The Reliability of the Bilateral Trigeminal Roots-motor Evoked Potentials as an Organic Normalization Factor: Symmetry or Not Symmetry? Dentistry S2:005. doi: 10.4172/2161-1122.S2-005

Copyright: © 2014 Frisardi G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Background: In order to achieve a complete clinical evaluation of mastication, an in-depth neurophysiopathological assessment of masticatory muscles control is needed. Electromyography technique (EMG) is widely used for this purpose but failed to give convincing results. The aim of this work was to describe our quantitative objectivation of the motor control of the masticatory muscles and to verify the hypothesis to consider the bilateral Root Motor Evoked Potentials as an electrophysiological normalization factor. Methods: 25 healthy people (15 males, 10 females; mean age 29 years ± 5) with normal occlusion and no history of temporomandibular disorders and orofacial pain underwent a transcranical electrical stimulation that allowed a direct bilateral stimulation of the motor roots of the trigeminal motor system called bilateral Root Motor Evoked Potentials (bRMEPs). The maximal Absolute Neural Evoked Energy, symmetry and synchrony properties of the resulting bR-MEPs were studied using measures like latency, amplitude and integrated area of the collected signal. An Artificial Neural Network computational model was used to estimate the correlation coefficient with the EMG values of each of both sides to predict the values from the right side by inputting values from the left side. Results: With regard to the descriptive statistical aspect the mean and SD values were for onset latency (1.96 msec ± 0.18 msec vs. 2.01 msec ± 0.21 msec), amplitude (5.76 mV ± 2.01 mV vs. 5.89 mV ± 2.51 mV) and integral area (11.09 mV/msec ± 4.45 mV/msec vs. 11.27 mV/msec ± 4.34 mV/msec) for right and left masseter muscle, respectively. The Kruskal-Wallis test shows not statistically significant difference between the medians (confidence level 95%) in fact the P–value was 0.33, 0.96 and 0.86 between sides for latency, amplitude and the EMG integral area, respectively for the bR-MEPs. The similarity between sides of the data sampled, studied in terms of mean squared error and correlation coefficients for latency (R2=0.955, SME=0,032) amplitude (R2=0.948, SME=0.162) and integrated area (R2=0.947, SME=0.212), indicates an organic symmetry of the trigeminal motor nervous system. Conclusion: These results show the high efficiency in terms of symmetry and stability of the bR-MEPs as a normalization factor.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version