alexa Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion | OMICS International
ISSN: 1948-5948

Journal of Microbial & Biochemical Technology
Open Access

Like us on:
OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Biocorrosion

Tingyue Gu*

Department of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, USA

*Corresponding Author:
Prof. Tingyue Gu
Department of Chemical and Biomolecular Engineering
Institute for Corrosion and Multiphase Technology
Stocker Center 167B, Ohio University
Athens, Ohio 45701, USA
Tel: 740-593-1499
Fax: 740-593-0873
E-mail: [email protected]

Published date: December 24, 2013; Published date: January 21, 2014; Published date: January 24, 2014

Citation: Gu T (2014) Theoretical Modeling of the Possibility of Acid Producing Bacteria Causing Fast Pitting Bioc`orrosion. J Microb Biochem Technol 6:067-073. doi:10.4172/1948-5948.1000124

Copyright: © 2014 Gu T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract

Biocorrosion, also known as microbiologically influenced corrosion (MIC), is caused by various corrosive biofilms. So far, laboratory experimental MIC pitting tests in the published literature have overwhelmingly focused on sulfate reducing bacteria (SRB) that use sulfate as the terminal electron acceptor because SRB and sulfate are often found at anaerobic pitting sites. Many laboratory pure-culture SRB pitting corrosion data have been reported and they are often less than or not much greater than 1 mm/year. There are also some limited data available for nitrate reducing bacteria (NRB) that use nitrate or nitrite as the terminal electron acceptor. Dedicated laboratory studies are lacking on anaerobic corrosion by acid producing bacteria (APB) that undergo anaerobic fermentation instead of anaerobic respiration in the absence of an external terminal electron acceptor such as sulfate and nitrate. Failures in pipelines carrying crude oil and produced water purportedly due to MIC have been reported in the literature. Some point to very high pitting corrosion rates (as high as 10 mm/year) that are much higher than the short-term laboratory MIC pitting corrosion rates for SRB. The pipeline failure cases discussed in this work occurred in relatively low sulfate conditions. This work explored the possibility of very high MIC pitting corrosion rates due to free organic acids (represented by acetic acid) and acidic pH corrosion through mechanistic modeling to show that APB biofilms are capable of very fast MIC pitting while mass transfer limitation on sulfate diffusion from the bulk-fluid phase to the biofilm cannot support very fast pitting caused by sulfate reduction in a low sulfate concentration environment. More efforts should be devoted to MIC by APB instead of focusing too much on SRB.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version