alexa Thermodynamic Explanation for the Cosmic Ubiquity of Organic Pigments
ISSN: 2332-2519

Journal of Astrobiology & Outreach
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Thermodynamic Explanation for the Cosmic Ubiquity of Organic Pigments

Karo Michaelian1* and Aleksandar Simeonov2

1Instituto de Física, Universidad Nacional Autonoma de México, Mexico

2Institute of Biology, Saints Cyril and Methodius University of Skopje, Macedonia

*Corresponding Author:
Karo Michaelian
Instituto de Física
Universidad Nacional Autonoma de México
Circuito de la Investigación Cientifica
Cuidad Universitaria, Mexico
Tel: 525562225001
E-mail: [email protected]

Received Date: October 21, 2016; Accepted Date: February 2, 2017; Published Date: February 8, 2017

Citation: Michaelian K, Simeonov A (2017) Thermodynamic Explanation for the Cosmic Ubiquity of Organic Pigments. Astrobiol Outreach 5:156. doi:10.4172/2332-2519.1000156

Copyright: © 2017 Michaelian K, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



There is solid evidence for the occurrence of large amounts of organic material in the cosmos, particularly in the form of aromatic compounds. These molecules can be found on the surface of Earth and Mars, in the atmospheres of the larger planets and on many of their satellites, on asteroids, comets, meteorites, the atmospheres of red giant stars, interstellar nebulae, and in the spiral arms of galaxies. Many of these environments are expected to be of low temperature and pressure, implying that the Gibb’s free energy for the formation of these complex molecules should be positive and large, suggesting that their existence could only be attributed to non-equilibrium thermodynamic processes. In this article we first review the evidence for the abundance of these molecules in the cosmos and then describe how the ubiquity can be explained from within the framework of non-equilibrium thermodynamics on the basis of the catalytic properties of these pigment molecules in dissipating photons of the ultraviolet and visible emission spectra of neighboring stars, leading to greater local entropy production. A relation between the maximum wavelength of absorption of these organic pigments and the corresponding stellar photon environment provides a guide to determining which aromatic compounds are most probable in a given stellar neighborhood, a postulate that can be verified on Earth. It is suggested that at least some of the baryonic dark matter may be associated with these molecules which emit in the extreme infrared with many, but weak, emission lines, thus so far escaping detection. This thermodynamic explanation for the ubiquity of these organic molecules also has relevance to the possibility of life, both as we know it, and as we may not know it, throughout the universe.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version