alexa Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells | OMICS International | Abstract
ISSN: 2157-7633

Journal of Stem Cell Research & Therapy
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells

Satyabrata Das1, Snehalata Jena1, Eun-Mi Kim1, Nicholas Zavazava1 and Dana N. Levasseur1,2*

1Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, Iowa City, USA

2Programs in Genetics and Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa 52242, USA

Corresponding Author:
Dana N. Levasseur
285 Newton Road
Department of Internal Medicine
Roy J. and Lucille A. Carver College of Medicine
Iowa City, IA, 52242 USA
Tel: 319-384-4686
Fax: 319-353-5552
E-mail: [email protected]

Received Date: July 18, 2012; Accepted Date: August 22, 2012; Published Date: August 24, 2012

Citation: Das S, Jena S, Kim EM, Zavazava N, Levasseur DN, et al. (2012) Transcriptional Regulation of Human NANOG by Alternate Promoters in Embryonic Stem Cells. J Stem Cell Res Ther S10:009. doi:10.4172/2157-7633.S10-009

Copyright: © 2012 Das S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Introduction: The potential of pluripotent stem cells to be used for cell therapy depends on a comprehensive understanding of the molecular mechanisms underlying their unique ability to specify cells of all germ layers while undergoing unlimited self-renewal. Alternative splicing and alternate promoter selection contribute to this mechanism by increasing the number of transcripts generated from a single gene locus and thus enabling expression of novel protein variants which may differ in their biological role. The homeodomain-containing transcription factor NANOG plays a critical role in maintaining the pluripotency of Embryonic Stem Cells (ESC). Therefore, a thorough understanding of the transcriptional regulation of the NANOG locus in ESCs is necessary.

Regulatory footprints and transcription levels were identified for NANOG in human embryonic stem cells from data obtained using high-throughput sequencing methodologies. Quantitative real-time PCR following reverse transcription of RNA extracted human ESCs was used to validate the expression of transcripts from a region that extends upstream of the annotated NANOG transcriptional start. Promoter identification and characterization was performed using promoter reporter and electrophoretic mobility shift assays.

Transcriptionally active chromatin marking and transcription factor binding site enrichment were
observed at a region upstream of the known transcriptional start site in NANOG. Expression of novel transcripts from this transcriptionally active region confirmed the existence of NANOG alternative splicing in human ESCs. We identified an alternate NANOG promoter of significant strength at this upstream region. We also discovered that NANOG autoregulates its expression by binding to its proximal downstream promoter.

Our study reveals novel transcript expression from NANOG in human ESCs, indicating that
alternative splicing increases the diversity of transcripts originating from the NANOG locus and that these transcripts are expressed by an alternate promoter. Alternative splicing and alternate promoter usage collaborate to regulate NANOG, enabling its function in the maintenance of ESCs.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7