alexa Transcriptome analysis of Leucaena leucocephala and identification of highly expressed genes in roots and shoots | OMICS International
ISSN: 2329-8936

Transcriptomics: Open Access
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Transcriptome analysis of Leucaena leucocephala and identification of highly expressed genes in roots and shoots

Kazue L Ishihara, Michael DH Honda, Dung T Pham and Dulal Borthakur*

Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Hawaii, USA

*Corresponding Author:
Dulal Borthakur
Department of Molecular Biosciences and
Bioengineering, University of Hawaii at Manoa, Hawaii, USA
Tel: (808) 956-6600
E-mail:
[email protected]

Received date: June 07, 2016; Accepted date: July 02, 2016; Published date: July 04, 2016

Citation: Ishihara KL, Honda MDH, Pham DT, Borthakur D (2016) Transcriptome Analysis of Leucaena leucocephala and Identification of Highly Expressed Genes in Roots and Shoots. Transcriptomics 4:135. doi:10.4172/2329-8936.1000135

Copyright: © 2016 Ishihara KL, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Leucaena leucocephala (leucaena) is a fast-growing tree legume highly tolerant to various abiotic and biotic stresses. Because of its abilities to withstand high temperature and prolonged drought and to grow as a disease-free plant, it is an interesting model plant to investigate genetics of stress resistance. The high-level stress resistance may be correlated with higher expression of certain genes in the root, which is the primary site for nutrient and water uptake and also infection by soil-borne pathogens. The objectives of this study were to characterize the transcriptome of leucaena and to identify root-specific genes that may be involved in drought tolerance and disease resistance. Transcriptomes of leucaena were analyzed through Illumina-based sequencing and de novo assembly, which generated 62,299 and 61,591 unigenes (≥ 500 bp) from the root and shoot, respectively. Through a 4 x 180,000 microarray analysis, the expression of 10,435 unigenes were compared between the root and shoot. Upregulated sequences in the root were mostly represented by unigenes that were related to secondary metabolism, while in the shoot, upregulated sequences were mostly represented by unigenes that were involved in carbohydrate and lipid metabolism. The unigenes sharing homology with terpenoid biosynthesis genes and a nicotianamine synthase gene were upregulated more than 100-fold in the root, which indicates that these genes may have important roles in high stress tolerance of leucaena. Cataloging of actively transcribed sequences in the root and shoot will lead to identification of genes for drought tolerance and disease resistance in leucaena.

Keywords

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

geneticsmol[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version