alexa Transfection of Endothelial Nitric Oxide Synthase Gene Improves Angiogenic Efficacy of Endothelial Progenitor Cells in Rabbits with Hindlimb Ischemia | OMICS International | Abstract
ISSN: 2155-9880

Journal of Clinical & Experimental Cardiology
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Transfection of Endothelial Nitric Oxide Synthase Gene Improves Angiogenic Efficacy of Endothelial Progenitor Cells in Rabbits with Hindlimb Ischemia

Savneet Kaur1,6, VS Harikrishnan2, Sachin J Shenoy2, NS Radhakrishnan3, Akira Uruno4, Akira Sugawara4 and Chandrasekharan C Kartha5*
1Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
2Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695014, India
3Division of Pathology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695011, India
4Department of Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
5Disease Biology and Molecular Medicine, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram 695014, India
6School of Biotechnology, Gautam Buddha University, Greater Noida, UP- 201308, India
Corresponding Author : Dr. Chandrasekharan C Kartha
Department of Disease Biology & Molecular Medicine
Rajiv Gandhi Center for Biotechnology
Thiruvananthapuram 695014, India
Tel: 91-471-2529448
Fax: 91-471-2348096
E-mail: [email protected]
Received May 26, 2011; Accepted July 06, 2011; Published July 11, 2011
Citation: Kaur S, Harikrishnan VS, Shenoy SJ, Radhakrishnan NS, Uruno A, et al. (2011) Transfection of Endothelial Nitric Oxide Synthase Gene Improves Angiogenic Efficacy of Endothelial Progenitor Cells in Rabbits with Hindlimb Ischemia. J Clinic Experiment Cardiol 2:140. doi:10.4172/2155-9880.1000140
Copyright: © 2011 Kaur S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Related article at
DownloadPubmed DownloadScholar Google

Abstract

Background: The present study explored the effect of endothelial nitric oxide synthase (eNOS) gene transfer on the angiogenic potential of ex vivo expanded endothelial progenitor cells (EPCs) in a rabbit model of hindlimb ischemia. Methods: Rabbit peripheral blood EPCs were cultured and transfected with mammalian expression vector pcDNA3.1-eNOS containing full-length human eNOS gene. Ischemia was induced in the right hind limb of three groups of rabbits by ligation of the distal external iliac artery and excision of the common and superficial femoral arteries. In one group of animals, ten days after the surgery, autologous eNOS-EPCs were transplanted intramuscularly in the ischemic limb. Two other groups received an equivalent number of unmodified EPCs or phosphate buffered saline (PBS) respectively. Results: Two weeks after cell transplantation, the in vivo expression of eNOS was detected in limb tissue sections of eNOS-EPCs treated animals. Animals treated with eNOS-EPCs had a significant reduction in ischemic muscle necrosis and inflammation, augmentation in the capillary density (P< 0.05) and angiographic scores demonstrating distal arterial reconstitution and enhanced angiogenesis in comparison to animals transplanted with EPCs or PBS (P< 0.05). Conclusion: We conclude that modification of EPCs by eNOS constitutes an effective strategy to improve the efficacy of EPCs for therapeutic angiogenesis.

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7