alexa Type 2 Diabetes Mellitus (T2DM): Biological Overview from Pathways to Organelles and its Translation toward a Torpid Wound Healing Process | OMICS International | Abstract
ISSN: 2155-6156

Journal of Diabetes & Metabolism
Open Access

Like us on:

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations
700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Review Article

Type 2 Diabetes Mellitus (T2DM): Biological Overview from Pathways to Organelles and its Translation toward a Torpid Wound Healing Process

Jorge Berlanga-Acosta1*, Pedro López-Saura2, Isabel Guillen-Pérez3, Gerardo Guillen-Nieto1, Boris Acevedo-Castro4, Luis Herrera-Martínez4

1Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Cuba

2Clinical Trials Division, Center for Genetic Engineering and Biotechnology, Cuba

3Pharmacogenomics Department, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Cuba

4Center for Genetic Engineering and Biotechnology, Cuba

*Corresponding Author:
Jorge Berlanga-Acosta
Wound Healing and Cyto-Protection Research Group
Biomedical Research Direction
Center for Genetic Engineering and Biotechnology
Havana 10600, PO Box: 6162, Havana, Cuba
Tel: 53-7-271 60 22
Fax: 53-7-250 44 94
E-mail: [email protected]

Received date: July 16, 2013; Accepted date: August 14, 2013; Published date: August 20, 2013

Citation: Berlanga-Acosta J, López-Saura P, Guillen-Pérez I, Guillen-Nieto G, Acevedo-Castro B, et al. (2013) Type 2 Diabetes Mellitus (T2DM): Biological Overview from Pathways to Organelles and its Translation toward a Torpid Wound Healing Process. J Diabetes Metab 4:285. doi: 10.4172/2155-6156.1000285

Copyright: © 2013 Berlanga-Acosta J, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


T2DM is a heterogeneous group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both. Hyperglycemia may simply represent the tip of a broad series of molecular events from mitochondrial damages, to epigenetic and metabolic pathways deregulations. At the same time, hyperglycemia appears as the most proximal trigger for the onset and perpetual progression of multi-organ complications even under normoglycemic conditions. Thus, the initial hyperglycemic hit translates into a permanently harmful cellular imprinting as has been demonstrated in diabetic donors’ cells after several passages and cultured in ideal conditions. The wound healing failure along with the inability of the innate immunity to control peripheral infections is the hybrid that determines that 85% of all non-traumatic lower extremity amputations are practiced in diabetic subjects. Diabetic wounds exhibit a complex networking of inflammatory cytokines, local proteases, cytotoxic reactive oxygen and nitrogen species and a polymicrobial biofilm that impose a stagnant phenotype. All these ingredients negatively impact on fibroblasts, endothelial cells and keratinocytes while paradoxically perpetuate the immuno-inflammatory infiltrate. Although the molecular fundamentals toward chronification have not been elucidated, it seems that different gene simultaneously converge to impose the wound cells a pro-senescent, pro-catabolic and pro-apoptotic phenotype given the lack of a “physiological tuning” of tyrosine kinase-dependent receptors due to their limited activation by insulin and local growth factors. Although recombinant growth factors and smart devices have been introduced during the last years the figures of amputations are still discouraging. Faults have been committed while selecting the appropriate growth factor and because of the “chronic” instinct to treat the chronic wounds topically, where bioavailability of the active principle is compromised by wound and bacterial biofilm proteases. The periodic intralesional infiltration of epidermal growth factor has proved to overcome this hurdle. Granulation tissue growth stimulation and wound healing capacity has been restored in diabetic patients by this procedure in several clinical trials and common clinical practice studies.


Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7