alexa UAS Propeller/Rotor Sound Pressure Level Reduction Thro
ISSN: 2168-9873

Journal of Applied Mechanical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

UAS Propeller/Rotor Sound Pressure Level Reduction Through Leading Edge Modification

Callender MN*

Middle Tennessee State University, USA

Corresponding Author:
Callender MN
Assistant Professor, Middle
Tennessee State University, USA
Tel: (615) 598-6552
E-mail: [email protected]

Received date: January 18, 2017; Accepted date: February 20, 2017; Published date: February 24, 2017

Citation: Callender MN (2017) UAS Propeller/Rotor Sound Pressure Level Reduction Through Leading Edge Modification. J Appl Mech Eng 6:254. doi:10.4172/2168-9873.1000254

Copyright: © 2017 Callender MN. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Manned aviation is regulated by the Federal Aviation Administration (FAA) to provide for safe, secure, efficient, and environmentally responsible aviation in the United States. One environmental issue regulated by the FAA is the noise created by aircraft. Federal Aviation Regulation (FAR) Title 14 Part 36 deals specifically with sound pressure levels (SPL) per aircraft type when the aircraft are in close proximity to the ground. Minimizing aircraft noise helps to maintain positive relationships between the aviation community and the general public. Unmanned aircraft systems (UAS) are a very rapidly growing segment of the aviation industry that operate within the National Airspace System (NAS); however, there is currently no regulation for UAS SPL. The UAS are regulated, as of August 29, 2016, such that they are mandated to be in close proximity to the ground (no higher than 400 ft). As with manned aircraft, UAS produce high levels of SPL, much of which is due to the propellers/rotors. The combination of proximity to the ground, high SPL, and increasing UAS density will most certainly result in a negative public reaction. To minimize the audible impact of UAS, the author sought to minimize the SPL of small UAS propellers/rotors via leading edge modifications. The modification consisting of a leading edge comb was inspired by one of the three characteristics found on the flight feathers of certain owls: leading edge comb, trailing edge tuft, and upper surface porosity. The modifications could successfully reduce SPL while maintaining constant levels of thrust over a wide range of rpm.


Share This Page

Additional Info

Loading Please wait..
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals


[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version