alexa Ultrasound Tomography for Spatially Resolved Melt Temperature Measurements in Injection Moulding Processes
ISSN: 2168-9873

Journal of Applied Mechanical Engineering
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Ultrasound Tomography for Spatially Resolved Melt Temperature Measurements in Injection Moulding Processes

Hopmann C and Wipperfürth J*

Institute of Plastics Processing (IKV), RWTH Aachen University, Seffenter Weg 201, 52074 Aachen, NRW, Germany

*Corresponding Author:
Jens Wipperfürth
Institute of Plastics Processing (IKV), RWTH Aachen University
Seffenter Weg 201, 52074 Aachen, NRW
Germany
Tel: +49 241 80 28364
E-mail: [email protected]

Received date: March 08, 2017; Accepted date: May 22, 2017; Published date: May 26, 2017

Citation: Hopmann C, Wipperfürth J (2017) Ultrasound Tomography for Spatially Resolved Melt Temperature Measurements in Injection Moulding Processes. J Appl Mech Eng 6: 264. doi: 10.4172/2168-9873.1000264

Copyright: © 2017 Hopmann C, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

In injection moulding processes, the measurement of the temperature distribution is very important for the validation of models used for simulative part design due to the high influence on shrinkage and warpage of the moulded part, but is also very challenging to measure. During the injection moulding process high mould pressures occur and the cavity is not easily accessible. Therefore, contact sensors cannot be used since they induce shear stress into the melt, which changes the flow behaviour of the melt and thus the temperature field. In this work, we present a method for the contactless determination of the temperature distribution of a moulded part during injection moulding using ultrasound tomography. With time-of-flight ultrasound measurements from different directions it is possible to reconstruct the distribution of ultrasound velocity in the cross-section of a moulded part. With this distribution, the temperature field can be calculated using additional material characteristic properties. Based on this concept, an injection mould was designed, that allows performing ultrasound tomography with 20 ultrasound transducers radially arranged around a cylindrical shaped cavity. This allows the temperature determination under real process conditions with a spatial resolution of 3.5 mm2. A highly parallelised measurement device allows recording of several complete datasets before no more signals can be detected due to shrinkage of the moulded part. During several injections moulding-cycles all sensor positions were able to detect noticeable signals. Due to internal signal processing of the measurement device, it is not yet possible to calculate arrival times of the ultrasound signal but amplitude-scans show the general feasibility of ultrasound tomography during injection moulding..

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords