alexa Use of Blood as a Surrogate Model for the Assessment of Visceral Adipose Tissue Methylation Profiles Associated with the Metabolic Syndrome in Men
ISSN: 1747-0862

Journal of Molecular and Genetic Medicine
Open Access

OMICS International organises 3000+ Global Conferenceseries Events every year across USA, Europe & Asia with support from 1000 more scientific Societies and Publishes 700+ Open Access Journals which contains over 50000 eminent personalities, reputed scientists as editorial board members.

Open Access Journals gaining more Readers and Citations

700 Journals and 15,000,000 Readers Each Journal is getting 25,000+ Readers

This Readership is 10 times more when compared to other Subscription Journals (Source: Google Analytics)

Research Article

Use of Blood as a Surrogate Model for the Assessment of Visceral Adipose Tissue Methylation Profiles Associated with the Metabolic Syndrome in Men

Frédéric Guénard1,2, Yves Deshaies3,4, Frédéric-Simon Hould5, Stéfane Lebel5, André Tchernof2,4, Picard Marceau5 and Marie-Claude Vohl1,2*

1Institute of Nutrition and Functional Foods (INAF), Canada

2School of Nutrition, Laval University, Québec, Canada

3Québec Heart and Lung Institute, Québec, Canada

4Department of Medicine, Laval University, Québec, Canada

5Department of Surgery, Laval University, Québec, Canada

Corresponding Author:
Marie-Claude Vohl
Institute of Nutrition and Functional Foods (INAF)
Université Laval, 2440 Hochelaga Blvd, Quebec, Canada
Tel: 41865621314676
Fax: 4186565877
E-mail: [email protected]

Received date: November 17, 2015; Accepted date: January 6, 2016; Published date: January 12, 2016

Citation: Guénard F, Deshaies Y, Hould FS, Lebel S, Tchernof A, et al. (2016) Use of Blood as a Surrogate Model for the Assessment of Visceral Adipose Tissue Methylation Profiles Associated with the Metabolic Syndrome in Men. J Mol Genet Med 10:198. doi:10.4172/1747-0862.1000198

Copyright: © 2016 Guénard F, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

 

Abstract

Epigenetic mechanisms are known to be involved in tissue-specific differentiation. DNA methylation patterns have been shown to be largely conserved across tissues but with variation for specific genes. However, it is unclear whether the variability observed in the methylation profile of a metabolically active tissue is reflected in other sources such as hematopoietic tissue. This study aimed to test blood genome-wide CpG site methylation levels as a surrogate model for visceral adipose tissue (VAT) methylation and to verify whether it appropriately reflects differences in methylation levels found in VAT between men discordant for the metabolic syndrome (MetS). Tissue specimens (VAT and blood samples) were obtained from 16 severely obese individuals discordant for the MetS. CpG sites methylation levels were measured with the Infinium HumanMethylation450 BeadChip and correlations of methylation levels between VAT and blood were computed. Differences in methylation levels between individuals with and without MetS were tested in both tissues. Pathway analysis was conducted for differentially methylated CpG sites common to both tissues. High cross-tissue correlations were observed for VAT and blood (0.952±0.014) while some CpG sites had significantly different methylation levels in VAT versus blood. Differential methylation analysis between individuals with and without MetS demonstrated a higher number of differentially methylated CpG sites in VAT than in blood (11,778 vs. 881, respectively) with nearly 4% of differentially methylated sites found in VAT being also represented in blood. Common differentially methylated sites were involved in inflammatory-, lipid- and diabetes-related pathways. These results suggest that blood methylation levels of specific CpG sites may adequately reflect VAT methylation levels for some of the MetS-related genes, specifically for inflammatory, lipid and glucose metabolism genes.

Keywords

Share This Page

Additional Info

Loading
Loading Please wait..
 
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords